

Available online at www.sciencedirect.com

ScienceDirect

Electronic Notes in DISCRETE MATHEMATICS

www.elsevier.com/locate/endm

The spectral excess theorem for distance-regular graphs having distance-dgraph with fewer distinct eigenvalues

M.A. Fiol 1,2

Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya Barcelona, Catalonia

Abstract

Let Γ be a distance-regular graph with diameter d and Kneser graph $K = \Gamma_d$, the distance-d graph of Γ . We say that Γ is partially antipodal when K has fewer distinct eigenvalues than Γ . In particular, this is the case of antipodal distance-regular graphs (K with only two distinct eigenvalues), and the so-called half-antipodal distance-regular graphs (K with only one negative eigenvalue). We provide a characterization of partially antipodal distance-regular graphs (among regular graphs with d distinct eigenvalues) in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a general version of the so-called spectral excess theorem, which allows us to characterize those distance-regular graphs which are half-antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.

Keywords: Distance-regular graph, Kneser graph, Partial antipodality, Spectrum, Predistance polynomials.

1 Introduction

Let Γ be a distance-regular graph with adjacency matrix A and d + 1 distinct eigenvalues. In the recent work of Brouwer and the author [1], we studied the situation where the distance-d graph Γ_d of Γ , or Kneser graph K, with adjacency matrix $A_d = p_d(A)$, has fewer distinct eigenvalues. In this case we say that Γ is *partially antipodal*. Examples are the so-called half antipodal (K with only one negative eigenvalue, up to multiplicity), and antipodal distance-regular graphs (K being disjoint copies of a complete graph). Here we generalize such a study to the case when Γ is a regular graph with d + 1distinct eigenvalues. The main result of this paper is a characterization of partially antipodal distance-regular graphs, among regular graphs with d + 1distinct eigenvalues, in terms of the spectrum and the mean number of vertices at maximal distance d from every vertex. This can be seen as a general version of the so-called spectral excess theorem, and allows us to characterize those distance-regular graphs which are half antipodal, antipodal, bipartite, or with Kneser graph being strongly regular.

Let Γ be a regular (connected) graph with degree k, n vertices, and spectrum sp $\Gamma = \{\lambda_0^{m_0}, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d}\}$, where $\lambda_0(=k) > \lambda_1 > \cdots > \lambda_d$, and $m_0 = 1$. In this work, we use the so-called *predistance polynomials* p_0, p_1, \ldots, p_d , introduced by the author and Garriga [5]. These are a sequence of orthogonal polynomials that can be seen as a generalization, for any graph, of the distance polynomials of distance-regular graphs. In fact, it is known that a regular graph Γ is distance-regular if and only if there exists a polynomial p of degree d such that $p(A) = A_d$, in which case $p = p_d$ (see [6]). Let Γ have diameter $D(\leq d)$. For $i = 0, \ldots, D$, let $k_i(u)$ be the number of vertices at distance i from vertex u. Let $s_i(u) = k_0(u) + \cdots + k_i(u)$. In our work we use the following result, which can be seen as a version of the spectral excess theorem due to Garriga and the author [5] (for short proofs, see Van Dam [2], and Fiol, Gago and Garriga [4]):

Theorem 1.1 Let Γ be a regular graph with spectrum sp $\Gamma = \{\lambda_0, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d}\}$, where $\lambda_0 > \lambda_1 > \cdots > \lambda_d$. Let $\overline{s_i} = \frac{1}{n} \sum_{u \in V} s_i(u)$ be the average number of vertices at distance at most *i* from every vertex in Γ . Then, for any polynomial

¹ Research supported by the *Ministerio de Ciencia e Innovación*, Spain, and the *European Regional Development Fund* under project MTM2011-28800-C02-01, and the *Catalan Research Council* under project 2009SGR1387.

² Email: fiol@ma4.upc.edu

 $r \in \Re_{d-1}[x]$ we have

(1)
$$\frac{r(\lambda_0)^2}{\|r\|_{\Gamma}^2} \le \overline{s_{d-1}},$$

with equality if and only if Γ is distance-regular and r is a nonzero multiple of $q_{d-1} = p_0 + \cdots + q_{d-1}$.

2 The results

As mentioned above, in [1] we studied the situation where the distance-d graph Γ_d , of a distance-regular graph Γ with diameter d, has fewer distinct eigenvalues. Now, we are interested in the case when Γ is regular and with d+1 distinct eigenvalues. In this context, p_d is the highest degree predistance polynomial and, as $p_d(A)$ is not necessarily the distance-d matrix A_d (usually not even a 0-1 matrix), we consider the distinct eigenvalues of $p_d(A)$ vs. those of A. More precisely, given a set $H \subset \{0, \ldots, d\}$, we give conditions for all $p_d(\lambda_i)$ with $i \in H$ taking the same value. Notice that, because the values of p_d at the mesh $\lambda_0, \lambda_1, \ldots, \lambda_d$ alternate in sign, the feasible sets H must have either even or odd numbers

The case $\lambda_0 \notin H$

We first study the more common case when $\lambda_0 \notin H$. For $i = 1, \ldots, d$, let $\phi_i(x) = \prod_{j \neq 0, i} (x - \lambda_i)$, and consider the Lagrange interpolating polynomial $L_i(x) = \phi_i(x)/\phi(\lambda_i)$, satisfying $L_i(\lambda_j) = \delta_{ij}$ for $j \neq 0$, and $L_i(\lambda_0) = (-1)^{i+1}(\pi_0/\pi_i)$, where $\pi_i = |\phi_i(\lambda_i)|$.

Theorem 2.1 Let Γ be a regular graph with degree k, n vertices, and spectrum sp $\Gamma = \{\lambda_0, \lambda_1^{m_1}, \ldots, \lambda_d^{m_d}\}$, where $\lambda_0(=k) > \lambda_1 > \cdots > \lambda_d$. Let $H \subset \{1, \ldots, d\}$. For every $i = 0, \ldots, d$, let $\pi_i = \prod_{j \neq i} |\lambda_i - \lambda_j|$. Let $\overline{k_d} = \frac{1}{n} \sum_{u \in V} k_d(u)$ be the average number of vertices at distance d from every vertex in Γ . Then,

(2)
$$\overline{k_d} \le \frac{n \sum_{i \in H} m_i}{\left(\sum_{i \in H} \frac{\pi_0}{\pi_i}\right)^2 + \sum_{i \notin H} \frac{\pi_0^2}{m_i \pi_i^2} \sum_{i \in H} m_i},$$

and equality holds if and only if Γ is a distance-regular graph with constant $P_{id} = p_d(\lambda_i)$ for every $i \in H$.

As mentioned above, when Γ is already a distance-regular graph, Brouwer and the author [1] gave parameter conditions for partial antipodality, and surveyed known examples. The different examples given here are withdrawn from such a paper.

Example 2.2 The Odd graph O_5 , on n = 126 vertices, has intersection array $\{5, 4, 4, 3; 1, 1, 2, 2\}$, so that $k_d = 60$, and spectrum $5^1, 3^{27}, 1^{42}, -2^{48}, -4^8$. Then, with $H = \{2, 4\}$, the function $\Phi(t)$ is depicted in Fig. 1. Its maximum is attained for $t_0 = 6$, and its value is $\Phi(6) = 66 = s_{d-1}$. Then, $P_{24} = P_{44}$.

Fig. 1. The function $\Phi(t)$ for O_5 with $H = \{2, 4\}$.

Notice that if, in the above result, H is a singleton, there is no restriction for the values of p_d , and then we get the so-called spectral excess theorem [5].

Corollary 2.3 (The spectral excess theorem) Let Γ be a regular graph with spectrum sp Γ and average number $\overline{k_d}$ as above. Then, Γ is distanceregular if and only if

$$\overline{k_d} = p_d(\lambda_0) = n \left(\sum_{i=0}^d \frac{\pi_0^2}{m_i \pi_i^2}\right)^{-1}$$

As mentioned before, in [1] a distance-regular graph Γ was said to be half antipodal if the distance-*d* graph has only one negative eigenvalue (i.e., P_{id} is a constant for every i = 1, 3, ...). Then, a direct consequence of Theorem 2.1 by taking $H = H_{odd} = \{1, 3, ...\}$ is the following characterization of half antipodality.

Corollary 2.4 Let Γ be a regular graph as above. Then,

(3)
$$\overline{k_d} \le \frac{n \sum_{i \text{ odd}} m_i}{\left(\sum_{i \text{ odd}} \frac{\pi_0}{\pi_i}\right)^2 + \sum_{i \text{ even}} \frac{\pi_0^2}{m_i \pi_i^2} \sum_{i \text{ odd}} m_i},$$

and equality holds if and only if Γ is a half antipodal distance-regular graph.

Recall that a regular graph is strongly regular if and only if it has at most three distinct eigenvalues (see e.g. [7]). Then, we can apply Theorem 2.1 with $H_{\text{even}} = \{2, 4, \ldots\}$ and $H_{\text{odd}} = \{1, 3, \ldots\}$ (and add up the two inequalities obtained) to obtain a characterization of those distance-regular graphs having strongly regular distance-*d* graph.

Corollary 2.5 Let Γ be a regular graph as above. Then,

(4)
$$\overline{k_d} \le \frac{n^2}{\left(\sum_{i \ even} \frac{\pi_0}{\pi_i}\right)^2 + \left(\sum_{i \ odd} \frac{\pi_0}{\pi_i}\right)^2 + \sum_{i \ even} \frac{\pi_0^2}{m_i \pi_i^2} \sum_{i \ odd} m_i + \sum_{i \ odd} \frac{\pi_0^2}{m_i \pi_i^2} \sum_{i \ even} m_i,$$

and equality holds if and only if Γ is a distance-regular graph with strongly regular distance-d graph Γ_d .

Example 2.6 The Wells graph, on n = 32 vertices, has intersection array $\{5, 4, 1, 1; 1, 1, 4, 5\}$ and spectrum $5^1, \sqrt{5}^8, 1^{10}, -\sqrt{5}^8, -3^5$. This graph is 2-antipodal, so that $k_d = 1$. Then, Fig. 2 shows the functions $\Phi_0(t)$ with $H_0 = \{2, 4\}$, and $\Phi_1(t)$ with $H_1 = \{1, 3\}$. Their (common) maximum value is attained for $t_0 = 1$ and $t_1 = -1$, respectively, and it is $\Phi_0(1) = \Phi_1(-1) = 31 = s_{d-1}$. Then, $P_{24} = P_{44}$ and $P_{14} = P_{34}$.

Fig. 2. The functions $\Phi_0(t)$ (in red) with $H_0 = \{2, 4\}$, and $\Phi_1(t)$ (in blue) with $H_1 = \{1, 3\}$ of the Wells graph.

The following result was used in [1,3] for the case of distance-regular graphs (where $p_d(\lambda_i) = P_{id}$).

Corollary 2.7 Let Γ be a regular graph with eigenvalues $\lambda_0 > \lambda_1 > \cdots > \lambda_d$. Let $H \subset \{1, \ldots, d\}$. Then, $p_d(\lambda_i) = p_d(\lambda_j)$ for every $i, j \in H$ if and only if $\sum_{i \neq j} (m_i \pi_i - m_j \pi_j)^2 = 0$.

The case $\lambda_0 \in H$

To deal with this case, we use the following result which was proved in [1]:

Proposition 2.8 ([1, Prop. 8]) Let Γ be a distance regular graph with diameter d. If $P_{0d} = P_{id}$ then i is even. Let i > 0 be even. Then $P_{0d} = P_{id}$ if and only Γ is antipodal, or i = d and Γ is bipartite.

Theorem 2.9 Let Γ be a regular graph with n vertices, spectrum sp Γ as above, and mean excess $\overline{k_d}$. Then, for every $i = 1, \ldots, d$,

(5)
$$\overline{k_d} \le \frac{n\left(m_i + \sum_{j \ne 0, i} \frac{\pi_0^2}{m_j \pi_j^2}\right)}{\left(\frac{\pi_0}{\pi_i} + \sum_{j \ne 0, i} \frac{\pi_0^2}{m_j \pi_j^2}\right)^2 + m_i + \sum_{j \ne 0, i} \frac{\pi_0^2}{m_j \pi_j^2}}.$$

Moreover:

- (a) Equality holds for some $i \neq d$ if and only it holds for any i = 1, ..., d and Γ is an antipodal distance-regular graph.
- (b) Equality holds only for i = d if and only if Γ is a bipartite, but not antipodal, distance-regular graph.

Example 2.10 For the Wells graph the right hand expression of (5) gives $1 (= k_4)$ for any i = 1, ..., 4, in concordance with its antipodal character. vertices, has intersection array $\{10, 9, 8, 7, 6; 1, 2, 3, 4, 10\}$ and spectrum $10^1, 6^{45}, 2^{210}, -2^{210}, -6^{45}, -10^1$. Then, the right hand expression of (5) gives 234.16, 293.36, 293.36, 234.16 for i = 1, 2, 3, 4, respectively, and $126 (= k_5)$ for i = 5, showing that FQ_{10} is a bipartite distance-regular graph, but not antipodal.

References

- [1] A.E. Brouwer and M.A. Fiol, *Distance-regular graphs where the distance-d graph* has fewer distinct eigenvalues, preprint (2014); arXiv:1409.0389 [math.CO].
- [2] E.R. van Dam, The spectral excess theorem for distance-regular graphs: a global (over)view, Electron. J. Combin. 15(1) (2008), #R129.
- [3] M.A. Fiol, Some spectral characterization of strongly distance-regular graphs, Combin. Probab. Comput. 10 (2001), no. 2, 127–135.

- [4] M.A. Fiol, S. Gago, and E. Garriga, A simple proof of the spectral excess theorem for distance-regular graphs, Linear Algebra Appl. 432 (2010), 2418–2422.
- [5] M.A. Fiol and E. Garriga, From local adjacency polynomials to locally pseudodistance-regular graphs, J. Combin. Theory Ser. B 71 (1997), 162–183.
- [6] M.A. Fiol, E. Garriga, and J.L.A. Yebra, *Locally pseudo-distance-regular graphs*, J. Combin. Theory Ser. B 68 (1996), 179–205.
- [7] C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, NewYork, 1993.