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Abstract

We prove that the number of 1-factorisations of a generalised Petersen graph of
the type GP (3k, k) is equal to the kth Jacobsthal number J(k) if k is odd, and
equal to 4J(k), when k is even. Moreover, we verify the list colouring conjecture
for GP (3k, k).
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1 Introduction

Often, combinatorial objects that on the surface seem quite different never-
theless exhibit a deeper, somewhat hidden, connection. This is, for instance,
the case for tilings of 3× (k − 1)-rectangles with 1× 1 and 2× 2-squares [12],
certain meets in lattices [7], and the number of walks of length k between ad-
jacent vertices in a triangle [3]: in all three cases the cardinality is equal to the
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kth Jacobsthal number. Their sequence 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341 . . . is
defined by the recurrence relation J(k) = J(k− 1)+2J(k− 2) and initial val-
ues J(0) = 0 and J(1) = 1. Jacobsthal numbers also appear in the context of
alternating sign matrices [10], the Collatz problem and in the study of necktie
knots [9]; see [13, A001045] for much more.

We add to this list by describing a relationship to certain generalised Pe-
tersen graphs GP (3k, k). Generalised Petersen graphs were first studied by
Coxeter [6]. For k, n ∈ N with k < n

2
, the graph GP (n, k) is defined as

the graph on vertex set {ui, vi : i ∈ Zn} with edge set {uiui+1, uivi, vivi+k :
i ∈ Zn}. See Figure 1 for two examples.

Theorem 1.1 For odd k, the number of 1-factorisations of the generalised
Petersen graph GP (3k, k) equals the Jacobsthal number J(k); for even k, the
number is equal to 4J(k).

A 1-factorisation of a graph G = (V,E) is a partition of the edge set into
perfect matchings. (A perfect matching is a set of |V |/2 edges, no two of which
share an endvertex.) Such factorisations are closely linked to edge colourings:
indeed, a d-regular graph G has a 1-factorisation if and only if its edge set can
be coloured with d colours. That is, the chromatic index, the minimal number
of colours needed to colour all the edges, is equal to d.

List edge-colourings generalise edge colourings. Given lists Le of allowed
colours at every edge e ∈ E, the task consists in colouring the edges so that
every edge e receives a colour from its list Le. The choice index of G is the
smallest number ℓ so that any collection of lists Le of size ℓ each allows a list
colouring. The choice index is at least as large as the chromatic index. The
famous list-colouring conjecture asserts that the two indices never differ:

Conjecture 1.2 (List-colouring conjecture) The chromatic index of ev-
ery simple graph equals its choice index.

While the conjecture has been verified for some graph classes, bipartite
graphs [11] and regular planar graphs [8] for instance, the conjecture remains
wide open for most graph classes, among them cubic graphs. We prove:

Theorem 1.3 The list-colouring conjecture is true for generalised Petersen
graphs GP (3k, k).

Generalised Petersen graphs are cubic graphs. All of them, except the
Petersen graph itself, have chromatic index 3; see Watkins [14], and Castagna
and Prins [5]. In particular, this means that the list colouring conjecture for
them does not follow from the list version of Brooks’ theorem.



Our proof is based on the algebraic colouring criterion of Alon and Tarsi [2].
In our setting, it suffices to check that, for a suitable definition of a sign,
the number of positive 1-factorisations differs from the number of negative
1-factorisations. In this respect our second topic ties in quite nicely with
our first, and we will be able to re-use some of the observations leading to
Theorem 1.1.

The following two sections provide the main ideas to prove Theorem 1.1
and 1.3. All details can be found in the full paper [4].

Fig. 1. The Dürer graph GP (6, 2) and the generalised Petersen graph GP (9, 3)

2 Counting 1-factorisations

We consider a fixed generalised Petersen graph GP = GP (3k, k). The outer
cycle CO of GP , the cycle u1u2 . . . u3k−1u3ku1 plays a key role.

Our objective is to count the number of 1-factorisations of GP . Rather
than counting them directly, we consider edge colourings and show that it
suffices to focus on certain edge colourings of the outer cycle.

Let φ be an edge colouring with colours {1, 2, 3} of either the whole graph
GP or only of the outer cycle CO. We split φ into k triples

φi = (φ (uiui+1) , φ (uk+iuk+i+1) , φ (u2k+iu2k+i+1)) for i = 1, . . . , k.

To keep notation simple, we will omit the parentheses and commas, and only
write φi = 123 to mean φi = (1, 2, 3). We, furthermore, define also φk+1 =
(φ (uk+1uk+2) , φ (u2k+1u2k+2) , φ (u1u2)), and note that φk+1 is obtained from
φ1 by a cyclic shift.

It turns out that the colours on the outer cycle already uniquely determine
the edge colouring on the whole graph. Moreover, it is easy to describe which
colourings of the outer cycle extend to the rest of the graph:



Lemma 2.1 Let φ : E(CO) → {1, 2, 3} be an edge colouring of CO. Then the
following two statements are equivalent:

(i) there is an edge colouring γ of GP with γ|CO
= φ; and

(ii) there is a permutation (a, b, c) of (1, 2, 3) so that φi and φi+1 are for all
i = 1, . . . , k adjacent vertices in one of the graphs T and H in Figure 2.

Furthermore, if there is an edge colouring γ of GP as in (i) then it is unique.

abc

bca cab

T

aba

bccaab

cbc

baa ccb

H

Fig. 2. The graphs T and H capture the possible combinations of consecutive colour
triples

The lemma implies that any edge colouring γ of GP corresponds to a walk
γ1γ2 . . . γk+1 of length k in either T or in H . Where does such a walk start
and end? By symmetry, we may assume that the walk starts at γ1 = abc or
γ1 = aab. It then ends in γk+1, which is either bca or aba. Conversely, all such
walks define edge colourings of GP .

To count the number of these walks, consider two vertices x, y of T , resp.
of H , that are at distance ℓ from each other in T (resp. in H). We define

tk(ℓ) := ♯ {walks of length k between x and y in T}

hk(ℓ) := ♯ {walks of length k between x and y in H}

Then every edge colouring of GP corresponds to a walk that is either counted
in tk(1) (as abc and bca have distance 1 in T ) or counted in hk(2).

Lemma 2.2 The number of 1-factorisations of GP (3k, k) equals tk(1)+3hk(2).

Since H covers T , the walks counted by hk(2) and tk(1) are in one-to-one
correspondence and we obtain

Lemma 2.3 hk(2) equals tk(1) for even k.

By [3], tk(1) equals J(k) which concludes the proof of Theorem 1.1.



3 List edge colouring

In order to show the list edge conjecture for GP = GP (3k, k), we use the
method of Alon and Tarsi [2], or rather its specialisation to regular graphs [8].

To define a local rotation, we consider GP (3k, k) always to be drawn as
in Figure 1: the vertices ui for i = 1, . . . , 3k are placed on an outer circle in
clockwise order, the vertices vi for i = 1, . . . , 3k on a smaller concentric circle
in such a way that ui and vi match up, and all edges are straight. We define
the sign of γ at a vertex w as + if the colours 1, 2, 3 appear in clockwise order
on the incident edges; otherwise the sign is −. The sign of the colouring γ is
then

sgn(γ) :=
∏

v∈V (GP )

sgnγ(v).

Since our graphs are regular, permuting colours in our context does not
change the sign of an edge colouring, see e.g. [8]. This allows to define a sign
sgn f for any 1-factorisation f by fixing it to the sign of any edge colouring
that induces f . The Alon-Tarsi colouring criterion now takes a particularly
simple form in d-regular graphs; see Ellingham and Goddyn [8] or Alon [1]: A
d-regular graph is d-list-edge-colourable if

∑

f 1-factor of G sgn(f) 6= 0.

Since the number of 1-factorisations of GP (3k, k) with odd k is the odd
number J(k), application of the criterion yields:

Corollary 3.1 For odd k, the graph GP (3k, k) has choice index 3.

Unfortunately, for even k the number of 1-factorisations is even. That
means, we need to count the positive and negative 1-factorisations separately.

As a first step, we refine the colour triple graphs T and H , and endow
them with signs on the edges. Figure 3 shows the graphs T± and H±, which
we obtain from T and H by replacing each edge by two inverse directed edges,
each having a sign. Note that in T± all edges in clockwise direction are positive,
while clockwise edges in H± are negative.

For two adjacent vertices x, y in T± or in H± we denote the sign of the
edge pointing from x to y by sgn(x, y). The next lemma shows that the signs
on the edges capture the signs of edge colourings.

Lemma 3.2 Let γ : E(GP ) → {1, 2, 3} be an edge colouring of GP , and let
(a, b, c) be a permutation of (1, 2, 3) so that γ1 is a vertex in T± or in H±.
Then

sgn(γ) =
k
∏

i=1

sgn(γi, γi+1).
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Fig. 3. Signs of the possible combinations of consecutive colour triples

Lemmas 2.1 and 3.2 imply that every positive 1-factorisation corresponds
to a walk in either T± or H± whose edge signs multiply to +. We call such a
walk positive; whereas a walk whose signs multiply to − is negative.

To count such walks, we observe that not only the distance between two
vertices has an influence on the sign of a walk between them, but also the
rotational direction of the shortest path.

For two vertices x and y for which the clockwise path from x to y is of
length ℓ, we define

t+k (ℓ) := ♯ {positive walks of length k from x to y in T±}

h+
k (ℓ) := ♯ {positive walks of length k from x to y in H±}

and t−k (ℓ) and h−
k (ℓ) analogously.

Similarly as in Section 2 for unsigned colourings, every positive edge colour-
ing of GP now corresponds to a positive walk in T± or in H±. Since all edge
colourings with the same associated 1-factorisation have the same sign, we
thus have a way to count positive and negative 1-factorisations via walks in
signed graphs:

Lemma 3.3 The number of positive/negative 1-factorisations of GP (3k, k)
equals t±k (2) + 3h±

k (2).

As in Lemma 2.3 we can state a connection between walks in T± and H±.

Lemma 3.4 h±
k (2) equals t±k (2) for even k.

Using recurrence relations between positive and negative walks with dif-



ferent endpoints yields for any integer k ≥ 1

t+k (2) =
1
6

(

2k − (−1)k
(

1 + (−3)⌈
k

2
⌉
))

t−k (2) =
1
6

(

2k − (−1)k
(

1− (−3)⌈
k

2
⌉
))

.

(1)

This shows that the number 4t+k (2) of positive 1-factorisations of GP (3k, k)
with even k does not equal the number 4t−k (2) of negative ones. Together with
Corollary 3.1, this proves Theorem 1.3.
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