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Abstract
Minimum Bisection denotes the NP-hard problem to partition the vertex set of a
graph into two sets of equal sizes while minimizing the number of edges between
these two sets. We consider this problem in bounded degree graphs with a given
tree decomposition (T, X ) and prove an upper bound for their minimum bisection
width in terms of the structure and width of (T, X ). When (T, X ) is provided as
input, a bisection satisfying our bound can be computed in time proportional to the
encoding length of (T, X ). Furthermore, our result can be generalized to k-section,
which is known to be APX-hard even when restricted to trees with bounded degree.
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1 Introduction and Results

Let us first fix some basic terminology. A cut (V1, V2, . . . , Vk) in a graph G
is a partition of its vertex set. An edge {x, y} of G is cut by (V1, V2, . . . , Vk)
if x and y belong to different sets Vi and Vj. The number of edges cut by
(V1, V2, . . . , Vk) is called the width of the cut and is denoted by e(V1, V2, . . . , Vk).
A k-section is a cut (V1, V2, . . . , Vk) such that the sizes of Vi and Vj differ by at
most one for all i, j ∈ [k], where [k] := {1, 2, . . . , k}. The Minimum k-Section
Problem asks to find a minimum k-section (V1, V2, . . . , Vk) in a graph G, i.e., a
k-section of minimum width among all k-sections in G, and MinSec(k, G) is
defined to be the width of (V1, V2, . . . , Vk). The special case k = 2 is also called
the Minimum Bisection Problem. In what follows, unless stated otherwise, n
and Δ(G) denote the number of vertices and the maximum degree of the
considered graph G, respectively.

1.1 Minimum Bisection

Finding a minimum bisection is a famous NP-hard optimization problem [6].
Jansen et al. showed that dynamic programming gives an exact algorithm
with running time O(2tn3) when a tree decomposition of width t is provided
as input [7]. Thus, the problem becomes polynomially tractable for graphs of
bounded tree width. For general graphs, the best known approximation algo-
rithm achieves an approximation ratio of O(log n) [9]. Further, the Minimum
Bisection Problem restricted to 3-regular graphs is as hard to approximate
as its general version [2]. Here, we focus on upper bounds for the minimum
bisection width in bounded degree graphs with a given tree decomposition
of small width. Lower bounds are more difficult to derive and only few are
known. One example is the spectral bound MinSec(2, G) ≥ 1

4λ2n, where λ2
denotes the second eigenvalue of the Laplacian of G [8].

In [4], we have shown that for every tree T

MinSec(2, T ) ≤ 8Δ(T )
diam∗(T ) , (1)

where diam∗(T ) := (diam(T ) + 1)/n denotes the relative diameter of the
tree T , i.e., the fraction of vertices of T on a longest path in T . This implies
that every tree with linear diameter and bounded maximum degree allows a
bisection of constant width. In general, every tree with bounded degree allows
a bisection of width O(log2 n) and the perfect ternary tree shows that this is
tight up to a constant factor.



Here, we improve the bound in (1) to be polylogarithmic in 1/ diam∗(T ),
more precisely MinSec(2, T ) ≤ Δ(T )((log2(1/d))2 + 9 log2(1/d) + 8), where
d := diam∗(T ). Also, we give a linear-time algorithm that computes a bi-
section satisfying this bound. Furthermore, we establish a similar bound for
general graphs by using a tree decomposition (T, X ). Instead of using the
relative diameter, we define a parameter r(T, X ) that roughly measures how
close the tree decomposition (T, X ) is to a path decomposition, which is a
tree decomposition (T̃ , X̃ ) where T̃ is a path. For example, every path P
has diam∗(P ) = 1 and allows a bisection of width 1. When the relative di-
ameter of a tree decreases, it looks less like a path. Similarly, consider a
graph G and a path decomposition (P, X ) of G of width t − 1. It is easy
to see that G allows a bisection of width at most tΔ(G) by walking along
the path P until we have seen n/2 vertices of G in the bags and then bisect-
ing G there. Therefore, we will define r(T, X ) in such a way that r(T, X )
is 1 for path decompositions (T, X ) and r(T, X ) decreases when (T, X ) is less
path-like. Let G = (V, E) be a graph and (T, X ) a tree decomposition of G
with X = (X i)i∈V (T ). Define w(T ′, X ) := | ⋃

i∈V (T ′) X i| for T ′ ⊆ T and let P
be a path in T for which w(P, X ) is maximum among all paths in T . Then,
we define r(T, X ) := w(P, X )/w(T, X ) to be the relative weight of a heaviest
path in (T, X ). Observe that w(T, X ) is the number of vertices of G and hence
we always have 1

n
≤ r(T, X ) ≤ 1. Furthermore, every tree T ′ allows a tree

decomposition (T, X ) with r(T, X ) ≥ diam∗(T ′). To state the improved ver-
sion of (1) for general graphs, define the size of a tree decomposition (T, X )
with X = (X i)i∈V (T ) as ‖(T, X )‖ := |V (T )| + ∑

i∈V (T ) |X i|, which measures its
encoding length.

Theorem 1.1 Every graph G on n vertices that allows a tree decomposi-
tion (T, X ) of width t − 1 satisfies

MinSec(2, G) ≤ 1
2tΔ(G)

((
log2

1
r(T,X )

)2
+ 9 log2

1
r(T,X ) + 8

)
.

If V (G) = [n] and the tree decomposition (T, X ) is provided, a bisection satis-
fying this bound can be computed in O (‖(T, X )‖) time.

Note that the algorithm corresponding to Theorem 1.1 does not neces-
sarily compute a minimum bisection, but it is much faster than the algo-
rithm by Jansen et al. in [7], which computes a minimum bisection. More-
over, Theorem 1.1 implies that every graph G that allows a path-like tree
decomposition (T, X ) of width t, i.e., with r(T, X ) = Ω(1), has a bisection
of width O(tΔ(G)). We conclude this section with the following lemma that



relaxes the size constraint on the sets of the cut and also gives an upper bound
of O(tΔ(G)) on the cut width without requiring the tree decomposition to be
path-like. It is a useful tool to prove Theorem 1.1 and might be of independent
interest. For a real x we use �x� to denote the smallest integer i with x ≤ i.

Lemma 1.2 Let G be a graph on n vertices that allows a tree decomposi-
tion (T, X ) of width t − 1. For every m ∈ [n] and every 0 ≤ c < 1, there is a
cut (V1, V2) in G such that cm ≤ |V1| ≤ m and e(V1, V2) ≤

⌈
log2

1
1−c

⌉
tΔ(G).

If V (G) = [n] and the tree decomposition (T, X ) is provided, then a cut satis-
fying these requirements can be computed in O (‖(T, X )‖) time.

1.2 Generalization to Minimum k-Section

The algorithm of Jansen et al. in [7] for computing a minimum bisection can
be modified to compute a minimum k-section in time polynomial in n but not
in k. Also, when k is part of the input, the width of a minimum k-section
cannot be approximated within any finite factor for general graphs [1] unless
P=NP. Furthermore, the problem remains APX-hard when restricted to trees
with bounded maximum degree, and it is NP-hard to approximate the width of
a minimum k-section within a factor of nc for any c < 1, even when restricted
to trees with bounded diameter [3]. In this section, we generalize Theorem 1.1
from bisection to k-section using similar ideas as in our generalization of (1)
for k-section in trees, see [5].

Theorem 1.3 Every graph G on n vertices that allows a tree decomposi-
tion (T, X ) of width t − 1 satisfies

MinSec(k, G) ≤ (k − 1) tΔ(G)
2

((
log2

1
r(T,X )

)2
+ 11 log2

1
r(T,X ) + 24

)
.

If V (G) = [n] and the tree decomposition (T, X ) is provided, a k-section with
these properties can be computed in O(k‖(T, X )‖) time.

Note that, if k ≥ n, then any graph on n vertices has only one k-section.
Therefore, we can assume without loss of generality that k < n and hence
the running time in Theorem 1.3 is always polynomial in the input length.
Furthermore, for connected graphs G on n vertices with bounded maximum
degree that allow a path-like tree decomposition (T, X ) of bounded width t,
the factor tΔ(G)((log2(1/r(T, X )))2 + 11 log2(1/r(T, X )) + 24) becomes con-
stant. As, for k < n, every k-section of a connected graph has width at
least k − 1, the algorithm in Theorem 1.1 achieves a constant factor approxi-
mation for MinSec(k, G) for this class of graphs.



Although the statements look similar, it is not straightforward to general-
ize Theorem 1.1 to Theorem 1.3, even for k = 4. For an arbitrary graph G,
the natural approach of constructing a 4-section by first constructing a bisec-
tion (V1, V2) and then constructing one bisection in G[V1] and one in G[V2]
can give a 4-section far from optimal, even when a minimum bisection is used
in each step [10]. This applies similarly to the setting that we are considering
here. For instance, consider the graph G obtained from a perfect ternary tree
on n/2 vertices and a cycle on n/2 vertices by adding an edge between a vertex
in the cycle and the root of the tree. Then, a minimum bisection (V1, V2) in G
puts all vertices of the ternary tree in the set V1 and all vertices of the cycle in
the set V2, or vice versa. Also the algorithm in Theorem 1.1 can produce the
bisection (V1, V2), when applied with the normal tree decomposition (T, X )
of G of width 2. Now, in the next step of constructing a 4-section of G, a
bisection in a perfect ternary tree is needed, which has width Ω(log n) and
therefore the recursively constructed 4-section has width Ω(log n). However,
Theorem 1.3 promises a 4-section of constant width for G as r(T, X ) ≥ 1

2 .

2 Proof Sketch for Theorem 1.1

The proof of Theorem 1.1 recursively builds the set V1 and therefore we con-
sider a more general version, where a graph’s vertex set is partitioned into
two sets V1 and V2 such that V1 contains a certain number of vertices. The
following lemma is the heart of the proof for Theorem 1.1.

Lemma 2.1 Let G be a graph on n vertices, and let (T, X ) be a tree decom-
position of G of width t − 1. For every m ∈ [n], the vertex set of G can be
partitioned into three pieces V1, V2, and Z such that one of the following holds:
(i) |V1| = m, Z = ∅, and e(V1, V2) ≤ 2tΔ(G), or
(ii) |V1| ≤ m ≤ |V1| + |Z|, 0 < |Z| ≤ 1

2n, e(V1, V2, Z) ≤ log2

(
16

r(T,X )

)
tΔ(G),

and there is a tree decomposition (T ′, X ′) for G[Z] of width at most t − 1
with r(T ′, X ′) ≥ 2r(T, X ).

The last lemma states that we can either find a partition into two sets V1
and V2 of sizes exactly m and n − m, or there is a partition with an additional
set Z, such that |V1| ≤ m ≤ |V1| + |Z| and r(T ′, X ′) ≥ 2r(T, X ). Hence,
applying Lemma 2.1 with parameter m′ = m − |V1| recursively to G′ = G[Z]
and (T ′, X ′), the relative weight of a heaviest path can be doubled in each
round, until it exceeds 1

2 and Option (ii) in Lemma 2.1 becomes infeasible,
which will then prove the existence of the cut in Theorem 1.1.



Concerning the algorithmic aspects in Theorem 1.1, a heaviest path in
(T, X ) can be computed in time proportional to ‖(T, X )‖ by dynamic pro-
gramming. Furthermore, there is an algorithmic version of Lemma 2.1 where
a path P ⊆ T is considered and, if Option (ii) occurs, then a tree decom-
position (T ′, X ′) for G′ = G[Z] and a path P ′ with w(P ′, X ′)/|V (G′)| ≥
2w(P, X )/n are computed. Therefore, we do not need to compute a heaviest
path for each application of Lemma 2.1. By adjusting computed parameters
and leaving (T ′, X ′) implicit, we can ensure the desired running time.

We conclude this section with a few words about the proof of Lemma 2.1.
Let X = (X i)i∈V (T ), consider a heaviest path P in T , and denote by i0 and j0
its first and last node. Let R be the union of the bags X i for all i in P .
For i in V (P ), denote by Ti the component of T − E(P ) that contains i. We
label the vertices of G with 1, 2, . . . , n by traversing P from i0 to j0. When
traversing a node i in P , the vertices not yet labeled in the bags associated
with the nodes in Ti receive consecutive labels and the vertices not yet labeled
in X i receive the largest labels among them. Let Ri ⊆ R and Si ⊆ V (G) \ R
be the sets of vertices labeled when traversing i. We identify the vertices of G
with their labels and define f(x) = x + m cyclically for all x ∈ V (G). Using
properties of tree decompositions, it is easy to show the following proposition,
where EG(i) denotes the set of edges of G that are incident with some vertex
in X i for i in T .

Proposition 2.2 For every i in P , in the graph G−EG(i), every vertex in Ri

is isolated and there are no edges between the following three sets: the set Si,
the union of Rj ∪ Sj over all j �= i that are between i0 and i on P , and the
union of Rj ∪ Sj over all remaining j �= i in P .

Using this, it is easy to see that, if there is a vertex x ∈ R with f(x) ∈ R,
then the cut (V1, V2) with V1 = {x + 1, . . . , x + m} satisfies Option (i) in
Lemma 2.1. Otherwise, we can show that there is a node i in P such that
(nearly) all vertices that are mapped into the set Si by f form a set Z with
the property needed for Option (ii) in Lemma 2.1 when using the tree de-
composition obtained from (T, X ) by deleting the vertices not in Z from the
bags. This set Z will contain a vertex x such that f(x) is in Si. Now, the
cut (W ′

1, W ′
2) with W ′

1 = {x + 1, . . . , x + m} might cut too many edges, but
we can find a subset W1 ⊆ W ′

1 such that W1 ∩ Z = ∅, |W1 ∪ Si| ≥ m, and
(W1, V (G) \ W1) cuts at most 2tΔ(G) edges by Proposition 2.2, see also Fig-
ure 1a). Then, we can apply Lemma 1.2 to the subgraph of G induced by Si

to obtain a set W̃1 such that (W̃1, Si \ W̃1) cuts only few edges in G[Si] and
the set V1 = W1 ∪ W̃1 has the desired property for Option (ii) in Lemma 2.1.
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Fig. 1. Constructions used in the proofs. The path P in the tree T is drawn at
the top. Under each node h of P , the set Rh is represented by a circle and the
set Sh is represented by a trapezoid. a) Partition for the proof of Lemma 2.1 with
V1 = W1 ∪W̃1. Sets and parts of sets that are mapped into Si by f are colored light
gray. b) The set Ṽ = (M \ Si) ∪ W1 for the proof of Theorem 1.3. The sets whose
vertices are counted by dR(v, v + m) are colored gray.

3 Proof Sketch for Theorem 1.3

The main idea for the proof of Theorem 1.3 is to find a cut (V1, V2) in G
with |V1| = m for a parameter m and the additional property that G[V2] allows
a tree decomposition (T ′, X ′) of width at most t − 1 with r(T ′, X ′) ≥ r(T, X ).
Finding such a cut k−1 times then produces the desired k-section. Let us now
sketch how to find such a cut (V1, V2). Consider a heaviest path P in (T, X )
and let r := r(T, X ). Define the sets R, Ri, and Si for i in P as in Section 2,
and consider the same labeling of the vertices of G. For x, y ∈ V (G), we define
the R-distance as the number of vertices v ∈ R\{y} that are between x and y
in the cyclical labeling. Using that |dR(x, y) − dR(x + 1, y + 1)| ≤ 1 for all x, y
in G and an averaging argument, we can show that there is a vertex v in G with
dR(v, v + m) = rm�. Without loss of generality we may assume that v ∈ R
or v+m ∈ R, because otherwise we can increase v until this is satisfied. Let M
be the set of vertices u �= v + m in G that are between v and v + m in the
cyclical labeling. If v ∈ R and v + m ∈ R, then the cut (M, V (G) \ M) has
the desired properties by Proposition 2.2 and because exactly rm� vertices
from R are in M . Otherwise, the cut (M, V (G) \ M) might cut too many
edges. Assume that v ∈ R and v + m /∈ R; the other case is similar. Let i
be the node in P with v + m ∈ Si. By applying Lemma 1.2 to G[Si], we can
partition the set Si into W1 and W2 by cutting only few edges and such that
Ṽ := (M \ Si) ∪ W1 satisfies m ≤ |Ṽ | ≤ 2m, see also Figure 1b). Furthermore,
the set Ṽ contains rm� vertices from R. On one hand, this will ensure



that there is a tree decomposition (T̃ , X̃ ) of G[Ṽ ] with r(T̃ , X̃ ) ≥ r/2 and
hence, we can use Theorem 1.1 to cut off m vertices from G[Ṽ ] for the set V1
without cutting too many edges. On the other hand, there are at most rm�
vertices from R in V1 and therefore the tree decomposition (T ′, X ′) obtained
from (T, X ) by deleting the vertices in V1 satisfies r(T ′, X ′) ≥ r(T, X ). The
algorithmic ideas for computing the k-section are similar to the ones used in
Section 2.
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