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Abstract

We extend the general framework of structural limits from graphs and relational
structures to finite structures (including function symbols). For perhaps the sim-
plest model of this type — sets with single unary function — we determine limit
objects with respect to the three main fragments of first order. In each of these
cases we solve an analog of Aldous-Lyons conjecture. This builds on the experience
gained when studying limits of sequences of trees.
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1 Introduction and Previous Work

Limit objects of convergent sequences of combinatorial objects recently gained
much interest [9]. This was initiated by the theory of limits of dense graphs
[10] and of limits of graphs with bounded degrees [3], followed by the study of
limits of hypergraphs [5], of permutations [7], etc. The unifying framework of
structural convergence has been proposed by the authors for general combina-
torial structures [11], based on a blend of combinatorics, probability theory,
model theory, and functional analysis, which may be outlined as follows:

Recall that a o-structure A is defined by its domain A, its signature o
(which is a set of symbols of relations and functions with their arities, and
the interpretation in A of all the relations and functions in o. A relational
structure is a structure whose signature only contains relational symbols, while
an algebra is a structure whose signature only contains function symbols. Let
X be a fragment of first-order logic (in the language defined from the signature
o). A sequence (A,),en of o-structures is X -convergent if, for every formula
¢ € X, the probability (¢, A,,) that ¢ is satisfied for a random assignment of
elements of A,, to the free variables converges as n grows to infinity. Three
fragments of first-order logic are of specific interest. They are all considered
in this paper:

e the fragment QF of quantifier-free formulas, which naturally extends the
notion of left convergence of dense graphs of Lovasz and Szegedy [10];

* the fragment FO' of local formulas (that is of formulas whose satisfaction
only depends on a r-neighborhood of the free variables), which naturally
extends the notion of local convergence of graphs with bounded degrees of
Benjamini and Schramm [3];

¢ the full set FO of all first-order formulas.

For a fragment X of first-order logic like those considered above, we have
the following general analytic representation theorem, which can be seen as
an extension of the representation of left limits of dense graphs by infinite
exchangeable graphs [1,6,8] and of local limits of graphs with bounded degrees
by unimodular distributions [3]:

Theorem 1.1 ([11]) Let S be the Stone dual of the Lindenbaum-Tarski al-
gebra defined by X, and let ' be the automorphism group of S (note that T’
naturally acts on S). For each formula ¢ € X, we denote by fsthe indicator
function of the clopen subset of S dual to ¢.

To each finite o-structure A corresponds (injectively) a T'-invariant prob-



ability measure pua on S such that for every formula ¢ € X it holds

A) = /S Fo(T) dpia(T),

For every sequence (A, )nen of o-structures the sequence (Ap)pen s X-
convergent if and only if the measures pua, converge weakly. Moreover, if the
sequence (A, )nen s X -convergent then the measures pa, converge to some I'-
invariant probability measure p with the property that for every formula ¢ € X
it holds

tim (6. A,) = [ £oT) (7

The key question in this area is to find a “nicer” description of limit ob-
jects themselves. Examples of such descriptions are analytic (graphons [10],
hypergraphons [5], and permutons [7]) or structure-like (Borel structures and
graphings [3]).

The notion of structural convergence relies both on a representation of
the combinatorial object (leading to the choice of a specific signature) and
on the choice of a fragment of first-order logic. On the other hand different
representations and different fragments may lead to same (or closely related)
convergence.

The present status is summarized by table 1.

Table 1
Known limit objects

signature QF-limit FO™ L ]imit FO-limit
one unary relation Borel marking Borel marking | Borel marking
one unary function Theorem 2.1 Theorem 2.2 Theorem 2.3
d involutions graphing graphing graphing
one binary symmetric relation graphon partial results ®
one binary symmetric function || very partial results® ? ?

2 modeling FO-limits (hence modeling FO'°“*!-limits) for sequences of graphs (G, )nen such
that for every r € N there is F'(r) such that for every n € N and every v € G,,, the number
of cycles in the r-neighborhood of v is at most F'(r) [12,14].

> Borel QF-limit for tree semi-lattice infimum function [4].



For the natural representation of graphs with maximum degree d (has a
relational structure), the notion of FO™_convergence meets the notion of
local convergence of Benjamini and Schramm. In this context, the limit of a
convergent sequence of bounded degree connected graphs can be represented
by a graphing, which is a Borel graph on a standard probability space that
satisfies the intrinsic mass transport principle [3], which states that for every
measurable subsets of vertices A, B it holds

/AdegB(x) du(z) /BdegA(y) du(y),

where degp(z) (resp. degy(x)) denotes the degree in B (resp. in A) of vertex
x, and f is the (atomless) probability measure on X. It is not known whether
every graphing is the local limit of a sequence of connected finite graphs. This
has been conjectured by Aldous and Lyons [2], but appears to be very difficult
to prove or disprove.

Alternatively, a graphing can be represented as a standard probability
space and D measure preserving involutions fi,..., fp, two distinct vertices
x and y being adjacent iff there is some 1 < i < D with f;(x) = y. Note
that the assumption that every f; is measure-preserving directly implies the
intrinsic mass transport principle. But finite graphs with degree less than
D can similarly be represented as a o-structure, where o = {fi,..., fp} only
contain function symbols interpreted as involutions, two vertices u and v being
adjacent if v # v and there is 1 < i < D such that f;(u) = v. In this setting,
the alternative form of graphings are QF-limits of bounded degree graphs
represented as purely functional o-structures.

For relational structures with a single relation symbol is QF-convergence
essentially the same as left-convergence [13]. It follows from the particular
cases of graphs [10] and regular hypergraphs [5] that QF-convergence of rela-
tional structures is essentially understood.

The general structures (including function symbols) can be of course re-
duced to relational structures but this reduction is not compatible with QF-
convergence. The introduction of function symbols has great expressive power
and this motivates our study of convergence of the simplest purely functional
structures: mappings.

An r-ary function can be used to encode an r-ary relation. For instance,
let f:V xV — V have the property that {f(z,y), f(y,z)} = {z,y} (such
mappings, or operations are called quasi-trivial). Quasi-trivial functions allow
us to encode any graph (by z ~ y iff f(z,y) = y) and QF-convergence of these
mappings is equivalent to left-convergence of the encoded graphs. This shows



that r-ary functions present an intermediate level between r-ary relations and
(r 4 1)-relations.

2 Statements of results

Our main result is that for “mappings” and all three main fragments we can
characterize the limit objects and thus particularly prove analog of the Aldous-
Lyons conjecture.

2.1 QF-limits of Mappings

When one considers left-convergence of graphs that are structurally sparse
(meaning that one cannot find large “random-like” parts in them), natural
limit object to consider for QF-convergence are Borel structures, that is struc-
tures whose domain is a standard Borel space equipped with an atomless
probability measure, and whose relations and functions are Borel.

In the statement of the next theorem, an element x € A is called a cyclic
element of a mapping f : A — A if there exists n € N such that f"(x) = x.

Theorem 2.1 The QF-limit of a QF-convergent sequence of mappings f, :
A, — A, (with A, finite, and lim,,_, |A,| = 00) can be represented as a
Borel mapping f : A — A, where A is a standard Borel space equipped with
an atomless probability measure v. Moreover, the mapping f is such that
for every measurable subset X of the set of all cyclic elements of f it holds
V(f1(X)) = v(X).

Conversely, every Borel mapping f : A — A, where A is a standard Borel
space equipped with an atomless probability measure v and such that for every
measurable subset X of the set of all cyclic elements of f it holds v(f (X)) =
v(X) is the QF-limit of a QF-convergent sequence of mappings f, : A, — A,
with A, finite and lim,,_, |A,| = cc.

2.2 FO“ _limits of Mappings

In the case of FO'*_convergence, the notion of Borel structure is too weak to
allow to properly extend the notion of Stone pairing to formulas that contain
quantifiers. Indeed, for every considered first-order formula ¢ the set of tuples
satisfying ¢ should be measurable in order to extend the Stone pairing to
the limit object. This leads to the notion of modeling: a modeling A is a
Borel structure whose domain A is a standard Borel space equipped with a



probability measure v, with the property that that every first-order definable
subset of A* is measurable (by the product measure v®*).

A modeling mapping f satisfies the finitary mass transport principle if, for
every measurable subsets X, Y of A, such that X C Imf and sup,cy |/ (z)N
Y| < oo. Then

V(fHX)NY) = /X @) N Y] du(y)

These definitions fit to the context of FO'°“limits of mappings:

Theorem 2.2 The FO°limit of an FO-convergent sequence of map-
pings fn @ Ay — A, (with A, finite, and lim,_, |A,| = o0) can be repre-
sented by a mapping modeling f : A — A with atomless associated probability
measure, such that f satisfies the finitary mass transport principle.

Conversely, every modeling mapping f : A — A with atomless associated
probability measure that satisfies the finitary mass transport principle is the
FO ™ _limit of an FO™-convergent sequence of mappings f, : A, — A, with
A, finite and lim,,_,, |A,| = co.

2.3 FO-limits of Mappings

In the case of full FO-convergence, some more restriction exists on the limit
objects. Specifically, every sentence which is true on the limit object should
have a finite model. In other words, the complete theory of the limit ob-
ject should have the finite model property. It appears that this is the only
additional requirement for FO-limits of mappings.

Theorem 2.3 The FO-limit of an FO-convergent sequence of mappings f, :
A, — A, (with A, finite, and lim,_, |A,| = 00) can be represented by a
mapping modeling f : A — A with atomless associated probability measure,
whose complete theory has the finite model property, and such that f satisfies
the finitary mass transport principle

Conversely, every modeling mapping f : A — A with atomless associ-
ated probability measure, whose complete theory has the finite model prop-
erty, and that satisfies the finitary mass transport principle is the FO-limat
of an FO-convergent sequence of mappings f, : A, — A, with A, finite and
lim,, o |An] = 0.



3 Examples

Let us give some intuition on the requirements of the theorems.

Example 3.1 Consider the mapping f : [0,1] — [0, 1], defined as follows:

1=z if x ¢ [2/5,3/5]
fle) = {2:}5 —4/5 otherwise

Then the mapping f is the QF-limit of the mappings f, : A, — A, where
Ap=Aar,...;a0,} U{by,... 0o} U{c1,...,c,} and f, is defined by f,(a;) =
b—1i, fu(b) =a; (for 1 <i<2n)and f,(¢;) = a; (for 1 <i < n). However,
f is not the local-limit of a sequence of mappings on finite sets, for otherwise
we can consider approximations g, : V,, — V,, of f with V,, finite (and g,
converges to f). Let C,, ={z €V, : gpog,(x) # x} and D,, = g,(C,) = {z €
Vo i3y (gn(y) = ) A(gn(z) # y)}. Then (denoting h the function symbol in
o to distinguish it from its interpretations f and g,) it holds

lim [Cal = lim ((A(h(z1)) # 21), gn) = ((h(h(z1)) # 1), f) = 1/5

tim 2ol — @y (h(y) = 20) A (b)), ) = 2/5

n—o0 ’Vn’ -

although for every integer n, we have |D,| < |C,| as D, = g,(C,,).

Example 3.2 Consider the mapping f : [0, 1] — [0, 1], which maps x to z/2.
This mapping is the QF-limit of the mapping f, : {0,...,n} — {0,...,n}
which maps nton and 0 < i < nto (i+1) mod n. However, f is not an FO'°®.
limit of finite mappings. Indeed, it is bijective but v(f~*([0,1/2]) # v([0,1/2]).

Example 3.3 Let 0 < a < 1/2 be irrational and let consider the mapping
f:[0,1) = [0,1) defined by

a)mod 1 if (In € N) z = namod 1
ifx=0

(z -
0
(x 4+ a)mod 1 otherwise

fz) =

Then f has no first-order approximation: the sentence

(VaIy f(y) = 2) A G,y (v #y) A flx) = f(y),



which means that f is surjective but not injective, belongs to the complete
theory of f, but this sentence has no finite model as every g : V. — V with V
finite that is surjective has to be injective as well. Hence the complete theory
of f does not have the finite model property. However, f is clearly the local
limit of the mapping f,, : {0,...,n — 1} — {0,...,n — 1} which maps z to
(x 4+ 1) mod n.

4 Concluding Remarks

Let us finish this extended abstract by saying that although the statement of
Theorems 2.2 and 2.3 are intuitive (as also indicated by the above examples)
we have no simple proof of them in either direction. The proofs build upon
experience gained in treating limits of colored bounded height trees [13] and
of trees in general [12], and uses a combinatorial analysis of the Stone dual on
the Lindenbaum-Tarski algebra, which may be of independent interest.
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