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Abstract

In a random graph with a spatial embedding, the probability of linking to a partic-
ular vertex v decreases with distance, but the rate of decrease may depend on the
particular vertex v, and on the direction in which the distance increases. In this ar-
ticle, we consider the question when the embedding can be chosen to be uniform, so
the probability of a link between two vertices depends only on the distance between
them. We give necessary and sufficient conditions for the existence of a uniform lin-
ear embedding (embedding into a one-dimensional space) for spatial random graphs
where the link probability can attain only a finite number of values.

Keywords: spatial graph model, linear embedding, random graph, geometric
graph.

1 Introduction

In the study of large, real-life networks such as on-line social networks and
hyperlinked “big data” networks, biological networks and neural connection
networks, link formation is often modelled as a stochastic process. The under-
lying assumption of the link formation process is that vertices have an a priori
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identity and relationship to other vertices, which informs the link formation.
These identities and relationships can be captured through an embedding of
the vertices in a metric space, in such a way that the distance between vertices
in the space reflects the similarity or affinity between the identities of the ver-
tices. Link formation is assumed to occur mainly between vertices that have
similar identities, and thus are closer together in the metric space. We take
as our point of departure a very general stochastic graph model that fits the
broad concept of graphs stochastically derived from a spatial layout, along the
same principles as described above. We refer to this model as a spatial random
graph. In a spatial random graph, vertices are embedded in a metric space,
and the link probability between two vertices depends on this embedding in
such a way that vertices that are close together in the metric space are more
likely to be linked.

The concept of a spatial random graph allows for the possibility that the
link probability depends on the spatial position of the vertices, as well as their
metric distance. Thus, in the graph we may have tightly linked clusters for two
different reasons. On the one hand, such clusters may arise when vertices are
situated in a region where the link probability is generally higher. On the other
hand, clusters can still arise when the link probability function is uniform, in
the sense that the probability of a link between two vertices depends only on
their distance, and not on their location. In this case, tightly linked clusters
can arise if the distribution of vertices in the metric space is inhomogeneous.
A cluster in the graph then points to a corresponding tightly packed cluster
in the metric space. The central question addressed in this paper is how to
recognize spatial random graphs with a uniform link probability function.

Here we study a one-dimensional spatial model where the metric space is
[0, 1]. Let W0 be the class of symmetric measurable functions from [0, 1]2 to
[0, 1], and let w ∈ W0. The w-random graph, G(n, w) is the graph with vertex
set V of n points chosen uniformly from the metric space [0, 1]. Then two
vertices x, y ∈ V are linked with probability w(x, y). The w-random graphs
was first introduced in [3]. For the graph G(n, w) to correspond to a notion
of spatial random graph, w must be such that points closer together have a
higher probability of being linked. This implies that for x < y the value of
w(x, y) decreases whenever x decreases or y increases. We call w ∈ W0 a
diagonally increasing function if it satisfies the above property.

The notion of diagonally increasing functions and our interpretation of
spatial random graphs were first given at a previous work. See [1]. Such
random models have several real life applications (see [2], and [4] for applica-
tions in social networks, and [5] for neuroscience). In [1], a graph parameter



Γ is given which aims to measure the similarity of a graph to an instance of
a one-dimensional spatial random graph model. However, the parameter Γ
fails to distinguish uniform spatial random graph models from the ones which
are intrinsically nonuniform. This natural question, which is a generalization
of the question regarding interval graphs versus unit interval graphs, is the
motivation behind this work.

We now formulate our central question: “which functions w are in fact
uniform in disguise?”

Definition 1.1 A diagonally increasing function w ∈ W0 has a uniform lin-

ear embedding if there exists a measurable injection π : [0, 1] → R and
a decreasing function fpr : R

≥0 → [0, 1] such that for every x, y ∈ [0, 1],
w(x, y) = fpr(|π(x)− π(y)|).

In this paper we only study the diagonally increasing functions w with finite
range. We will present necessary and sufficient conditions for a diagonally
increasing finite-valued w ∈ W0 to admit a uniform linear embedding. The
strength of our approach is the fact that it suggests an algorithm to construct
the embedding.

2 Uniform linear embedding of finite-valued functions

In this section we study the properties of finite-valued diagonally increasing
functions w ∈ W0. We will state our main result which provides necessary
and sufficient conditions for the existence of a uniform linear embedding for
diagonally increasing functions w ∈ W0. It turns out that w has a very specific
form. For each y ∈ [0, 1], w(x, y), viewed as a function of x, is a step function
which is increasing for x ∈ [0, y], and decreasing for x ∈ [y, 1]. This function is
determined by the boundary points where the function changes values. This
leads to the following definition.

Definition 2.1 Let w ∈ W0 be a diagonally increasing function with range(w) =
{α1, . . . , αN}, where α1 > α2 > . . . > αN . For 1 ≤ i ≤ N , the upper bound-

ary ri and the lower boundary ℓi are functions from [0, 1] to [0, 1] defined
as follows. Fix x ∈ [0, 1]. Then ℓi(x) = inf{y ∈ [0, 1] : w(x, y) ≥ αi}
and ri(x) = sup{y ∈ [0, 1] : w(x, y) ≥ αi}. Also, for 1 ≤ i < N , define
r∗i = ri|[0,ℓi(1)] and ℓ∗i = ℓi|[ri(0),1]. The function r∗i has domain [0, ℓi(1)] and
range [ri(0), 1], and ℓ

∗
i has domain [ri(0), 1] and range [0, ℓi(1)].

Since w is diagonally increasing, we have w(x, y) ≥ αi if y ∈ (ℓi(x), ri(x)).
On the other hand, w(x, y) < αi whenever y ∈ [0, ℓi(x)) ∪ (ri(x), 1]. Thus,



the boundaries almost completely define w. By modification of w on a set
of measure zero, we can assume that w(x, ri(x)) = w(x, ℓi(x)) = αi. We will
assume throughout without loss of generality that for 1 ≤ i ≤ N , the functions
ℓi, ri : [0, 1] → [0, 1] satisfy

w(x, y) ≥ αi if and only if ℓi(x) ≤ y ≤ ri(x).(1)

Note also that rN(x) = 1 for all x. Therefore, we usually only consider the
boundary functions ri, ℓi for 1 ≤ i < N . Below, we state an adaptation of
Definition 1.1 for finite-valued diagonally increasing functions.

Definition 2.2 Let w ∈ W0 be a diagonally increasing function of finite
range, defined as in Equation (1). Then w has a uniform linear embedding if
there exists a measurable injection π : [0, 1] → R and real numbers 0 < d1 <

d2 < . . . < dN−1 so that for all (x, y) ∈ [0, 1]2,

w(x, y) =



















α1 if |π(x)− π(y)| ≤ d1,

αi if di−1 < |π(x)− π(y)| ≤ di and 1 < i < N,

αN if |π(x)− π(y)| > dN−1.

(2)

We call d1, d2, . . . , dN−1 the parameters of the uniform linear embedding π.

As we can see in Definition 2.2 the value of w(x, y) is only a function of the
distance of π(x) and π(y), the images of x and y in [0, 1] under the uniform
linear embedding π.

We say that a function w is well-separated if the boundaries ri and ℓi are
continuous and boundaries ri and ℓi have positive distance from each other
and from the diagonal. In this paper we consider well-separated functions w.

The domain and range of ℓ∗i and r∗i , and thus any composition of such
functions, are (possible empty) closed intervals. We will refer to f1 ◦ . . . ◦ fk
as a legal composition, if each fi belongs to {r∗j , ℓ

∗
j : j = 1, . . . , N − 1} and

dom(f1 ◦ . . . ◦ fk) 6= ∅. We define the signature of the legal composition
f1 ◦ . . . ◦ fk to be the (N − 1)-tuple (m1, . . . , mN−1), where mi is the number
of occurrences of r∗i minus the number of occurrences of ℓ∗i therein. We use
Greek letters such as φ, ψ, . . . to denote legal compositions. We emphasize that
a legal composition is a function, which we denote by legal function, presented
in a particular manner as a composition of boundary functions. Note that two
legal compositions may be identical as functions, but have different signatures,
due to difference in their presentations. Legal compositions provide us with
appropriate “steps” to define constrained points.



Definition 2.3 Let w ∈ W0 be a diagonally increasing function with finite
range. Keep notations as in Definition 2.1, and define

P = {φ(0) : φ is a legal composition with 0 ∈ dom(φ)},

Q= {ψ(1) : ψ is a legal composition with 1 ∈ dom(ψ)}.

We refer to P ∪ Q as the set of constrained points of w.

Note that the sets P and Q are either disjoint or identical. In this paper
for simplicity we consider the case P ∩Q = ∅. We will study the case P = Q
in future work.

Definition 2.4 Assume a positive integer N and real numbers dN−1 > . . . >

d1 > 0 are given. The displacement of a legal composition φ, denoted by δ(φ),
is defined as

δ(φ) = d1m1 + . . .+ dN−1mN−1,

where (m1, m2, . . . , mN−1) is the signature of φ.

Now we are ready to present necessary and sufficient conditions for a diago-
nally increasing finite-valued function w to admit a uniform linear embedding.

Theorem 2.5 Let w ∈ W0 be a well-separated finite-valued diagonally in-
creasing function assuming values α1 > α2 > . . . > αN . Let P and Q be as in
Definition 2.3 and P∩Q = ∅. The function w has a uniform linear embedding
if and only if the following conditions hold:

(1) If φ is a legal composition with φ(x) = x for some x ∈ dom(φ), then φ is
the identity function on its domain.

(2) There exist real numbers 0 < d1 < . . . < dN−1 such that
(2a) The displacement δ as defined in Definition 2.4 is increasing on P, in

the sense that, for all x, y ∈ P, and legal compositions φ, ψ so that
x = φ(0) and y = ψ(0), we have that, if x < y then δ(φ) < δ(ψ).

(2b) The values 0 < d1 < . . . < dN−1 satisfy the following condition. Fix
1 ≤ i ≤ N −1. Let y ∈ Q be such that y < r∗i (0), and x be any element
of P. Let φ and ψ be legal compositions so that y = φ(1) and x = ψ(0).
Then there exists a ∈ R

≥0 such that δ(ψ) < a < di − δ(φ).

3 Necessary and sufficient conditions

This section is devoted to a brief overview of the proof of Theorem 2.5. As-
suming w admits a uniform linear embedding π, we will state some important
properties of π. These properties are the main components of the proof for
the necessity part.



If the boundaries of w in Definition 2.1 are such that ℓ∗1(1) < r∗1(0) then
it is easy to construct an increasing uniform linear embedding π for w. Now
suppose that ℓ∗1(1) > r∗1(0) and w admits a uniform linear embedding π. In
this case the following lemma shows that π is strictly monotone.

Lemma 3.1 Let w ∈ W0 be a diagonally increasing function with finite range,
defined as in Equation (1). Assume that w is well-separated, and admits a
uniform linear embedding π : [0, 1] → R with parameters 0 < d1 < d2 < . . . <

dN−1 as in Definition 2.2. Let ℓ∗1(1) > r∗1(0). Then π is strictly monotone. In
particular, π is continuous on all except countably many points in [0, 1].

We can assume without loss of generality that π(0) < π(r∗i (0)) and hence
π is strictly increasing.

Let π+(x) and π−(x) determine the right and the left limits of π at the
point x ∈ (0, 1). The following proposition shows that π is largely determined
by the displacement of the legal compositions that generate points of P.

Proposition 3.2 Let w ∈ W0 be a well-separated, diagonally increasing finite-
valued function. Assume that w admits a uniform linear embedding π : [0, 1] →
R with parameters 0 < d1 < d2 < . . . < dN−1 as in Definition 2.2. Let φ be
a legal composition with non-empty domain [p, q], where p ∈ P and q ∈ Q.
Then

(i) π+(φ(x))− π+(x) = δ(φ) for every x ∈ [p, q).

(ii) π−(φ(x))− π−(x) = δ(φ) for every x ∈ (p, q].

(iii) If δ(φ) = 0, then φ is the identity function on its domain.

The necessity of the conditions of Theorem 2.5 follows from Lemma 3.1
and Proposition 3.2. To prove the sufficiency we will construct a uniform
linear embedding π. There are some issues that we need to take into account
in the construction of π. For example the definition of π on intervals [x, y] and
[r∗(x), r∗(y)] are closely related. To take care of such relations we will define
an equivalence relation among some intervals on [0, 1].

Lemma 3.3 Let w be a diagonally increasing {α1, . . . , αN}-valued function as
define by Equation (1), and let P and Q be as in definition 2.3. Assume there
exist real numbers d1 < . . . < dN−1 such that conditions (1), (2a), and (2a) of
Theorem 2.5 hold. Let P ∪ Q denote the closure of P∪Q in the usual topology
of [0, 1]. For a countable index set I and pairwise disjoint open intervals Ii, we
have [0, 1] \ (P ∪Q) = ∪i∈IIi. We say i ∼ i′ if there exists a legal composition
φ such that Ii = φ(Ii′). Then the relation ∼ is an equivalence relation.



We now define a strictly increasing uniform linear embedding π in stages.
Here we avoid the details and just give a general insight into the process of
constructing π.

(1) Define π on P ∪Q.
• Let x ∈ P and φ(0) = x, where φ is a legal composition. Then π(0) = 0
and π(x) = δ(φ).

• We pick π(1) from an interval obtained from conditions of Theorem 2.5,
and for y ∈ Q we define π(y) = π(1)+δ(ψ) where ψ is a legal composition
with ψ(1) = y.

(2) Define π on P ∪ Q. We define π(x), for x in the completion of P ∪Q, using
sequences converging to x from the left (if possible).

(3) Extend π to [0, 1]\P ∪Q. We use the equivalence relation of Lemma 3.3 to
extend π to [0, 1]\P ∪ Q as follow. First note that [0, 1]\P ∪ Q = ∪i∈IIi for
a countable index set I. For each equivalence class [Ii], proceed as follows.
First, pick a representative Ii for [Ii], and define π on Ii. Then, for every
Ij ∈ [Ii], let φ is a legal composition with φ(Ij) = Ii. We define π(x)
according to the definition of π on Ii, i.e., for x ∈ Ij

π(x) = π(φ(x))− δ(φ).

This gives us a strictly increasing uniform linear embedding on [0, 1].
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