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Universitat Politècnica de Catalunya
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Abstract

We present a unified framework to asymptotically count the number of sets, with
a given cardinality, free of certain configurations. This is done by combining the
hypergraph containers methodology joint with arithmetic removal lemmas. Several
applications involving linear configurations are described, as well as some applica-
tions in the random sparse setting.
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1 Introduction

The study of sparse (and probabilistic) analogues of well-known results in ex-
tremal combinatorics have become a very active area of research in extremal
and random combinatorics (see e.g. the survey by Conlon [2].) One starting
point is the Szemerédi Theorem [23] on the existence of arbitrarily long arith-
metic progressions in sets of integers with positive upper density. This seminal
result and the tools arising in its many proofs have been enormously influential
in the development of modern discrete mathematics. Additionally, nowadays a
large proportion of the research in additive combinatorics is inspired on these
achievements.

Sparse analogues of Szemerédi Theorem started in Kohayakawa, Rödl and
 Luczack [10] by giving the threshold probability for a random set of the integer
interval [1, n] whose subsets of given density contain a.a.s. 3–term arithmetic
progressions. The extension of the result to k–term arithmetic progressions
was a breakthrough obtained independently, and by different methods, by
Conlon and Gowers [3] and by Schacht [19].

Recently, the problem has found a new solution using combinatorial argu-
ments independently by Saxton, and Thomason [18] and by Balogh, Morris,
and Samotij [1]. The approach in the above two papers is based on a methodol-
ogy building on the structure of independent sets in hypergraphs. Hypergraphs
containers (as it is named in [18]) provides a general framework to attack a
wide variety of problems, building on seminal results of Kleitman and Win-
ston for graphs without cycles of length four [9]. The philosophy behind this
method is that, for a wide variety of uniform hypergraphs which satisfy mild
conditions, one can find a small collection of sets of vertices (which are called
containers) which contain all independent sets of the given hypergraph, thus
providing sensible upper bounds on the number of independent sets. By using
appropriate models, solutions of systems of equations or configurations are
represented by independent sets in hypergraphs leading to arithmetic appli-
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cations of the containers approach.

In addition to important applications in combinatorics, the two papers
above mentioned also contain arithmetic applications, providing in particular a
new proof of the sparse Szemerédi Theorem. One important ingredient of these
proofs, explicitely exposed in [1], is the so-called Varnavides Theorem [25].
This is the robust counterpart of Szemerédi Theorem: once a set has positive
density, it does not only have one but a positive proportion of the total number
of k–term arithmetic progressions. Nowadays there is a rich theory dealing
with this type of results, which are rephrased under the name of Arithmetic
Removal Lemmas. The idea behind them can be traced back to the proof of
Roth’s Theorem by Ruzsa and Szemerédi [17] and was formulated by Green [8]
for a linear equation in an abelian group by using methods of Fourier analysis.
The picture was complemented independently by Shapira [20] and by Král,
Serra and Vena [13] by proving a removal lemma for linear systems in the
integers. These results have been extended in several directions, including
arithmetic removal lemmas for a single equation in non-abelian groups, for
linear systems over finite fields and for integer linear systems over finite abelian
groups (see [12,20,13,14]).

These extensions of Green’s Arithmetic Removal Lemma provide proofs of
the Szemerédi Theorem in general abelian groups (see also Szegedy’s [22]), but
cannot handle the robust versions of the multidimensional Szemerédi Theo-
rem (see for instance Solymosi’s [21] on Furstenberg and Katznelson’s [7]) or,
more generally, the appearance and enumeration of finite configurations in
dense subsets in abelian groups (as seen in Tao [24, Theorem B.1]). As a
consequence, the above mentioned arithmetic removal lemmas cannot be used
to show the sparse counterparts of these results (see [1,3,19]).

In this work we develop a general framework to analyze these problems
by combining the containers methodology together with robust versions of
arithmetic removal lemmas that encompass those previously mentioned finite
configurations in abelian groups [26, Theorem 2].

The main tool is Theorem 3.1 (Section 3) which provides an abstract count-
ing result for the number of sets which are free of given systems of configura-
tions in groups (see Section 2 for the definitions and terminology.) Section 4
contains the main contribution of the work. We describe applications of the
general framework provided by Theorem 3.1 to natural examples of configu-
rations in abelian groups as well as solutions of single equations in nonabelian
groups. The configurations studied are novel and a consequence of arithmetic
removal lemmas from homomorphisms over groups (see [26]).



2 Definitions: system of configurations

Let us give the main notion we study.

Definition 2.1 [System of configurations] Let k be a positive integer, let G
be a finite set and let A be a map from Gk = G× · · · ×G to {0, 1}. Then the
pair (A,G) is said to be a system of configurations of degree k. We say that
(g1, . . . , gk) ∈ Gk is a solution of the system if A(g1, . . . , gk) = 1. We write
S(A,G) = A−1(1) for the solution set.

We also denote by Sj(A,G) the subset of S(A,G) where the solutions g =
(g1, . . . , gk) have j different values, namely, the set {g1, . . . , gk} has cardinality
j.

For a given set S = {s1, . . . , sm} ⊂ [k], let πS denote the projection
πS : Gk → Gm with (g1, . . . , gk) 7→ (gs1, . . . , gsm). In other words, πS keeps the
coordinates indexed by the elements in S. For i ∈ [k], let us define the i-th
(A,G)-degree of freedom as the following quantity associated to the configu-
ration system (A,G):

αi = max
B⊂[k]
|B|=i

max
(x1,...,xi)∈Gi

[

S(A,G) ∩ π−1
B (x1, . . . , xi)

]

.

Additionally, we define the restricted i-th (A,G)-degree of freedom as the quan-
tity

αk
i = max

B⊂[k]
|B|=i

max
(x1,...,xi)∈Gi

[

Sk(A,G) ∩ π−1
B (x1, . . . , xi)

]

.

The following definition is inspired by Varnavides Theorem [25], which
gives a robust version of Roth’s Theorem [15]:

Definition 2.2 [Varnavides property, V-property] The system of configura-
tions (A,G) of degree k is said to fulfill the Varnavides property, or V-property,
with function γ if, for every ǫ > 0, there exists a γ = γ(ǫ, A) > 0 such that,
for any B ⊂ G with |B| ≥ ǫ|G|, then

|Bk ∩ S(A,G)| ≥ ⌊γ|S(A,G)|⌋.

Given a set of indices I, a family of systems {(Ai, Gi)}i∈I is said to satisfy
the V -property if γ is the same function for each member of the family and
only depends on ǫ, γ = γ(ǫ).



3 Main tool

Theorem 3.1 represents a unified approach to count the number of solution–
free sets for systems of configurations.

Theorem 3.1 (Counting independent sets for systems of configurations)
Let k be a fixed positive integer and δ > 0. Let (A,G) be a system of con-
figurations of degree k satisfying the V-property with function γ = γ(δ, A).
Write n = |G|. For each i ∈ [1, k], let αk

i be the restricted i-th (A,G)-degree
of freedom.

Assume that each subset of G with more than δn
2
elements contains a con-

figuration in Sk(A,G). Assume that ξ = (γ − 1)|S(A,G)| + |Sk(A,G)| > 0.
Then for each t such that

t ≥ C
|G|

δ
max
ℓ∈[2,k]

{

(

αk
ℓ

αk
1

1

k

(

k

l

))

1

l−1

}

and t ≤
δn

2

where C = C(k, ǫ, c) is the C appearing in [1, Theorem 2.2] evaluated at

ǫ =
ξ

|Sk(A,G)|
and c = αk

1

(k − 1)! |G|

|Sk(A,G)|
,

there are

t

[

2e

δ2

]δt (
δn

t

)

sets of size t with no solution in Sk(A,G). If we assume that δ = min{β/2, 1/40},
then the bound can be rewritten as

(

βn

t

)

.

Theorem 3.1 reads as follows: given a system of configurations (A,G) sat-
isfying the V-property and extra mild natural conditions, we can obtain upper
bounds for the number of sets of a given cardinality with no configuration in
Sk(A,G).

The proof of Theorem 3.1 involves the construction of an appropriate hy-
pergraph in which the independent sets correspond to sets free of configura-
tions of the given system (A,G). The construction is set up to allow for an
application of [1, Theorem 2.2].

Most of the system of configurations in the applications have some com-
mon features. Each example consists of a family of configuration systems



{(Ai, Gi)}i∈N where each Gi is growing in size with i and limi→∞ |Gi|/|S(A,Gi)| =

0. We also require that limi→∞
|Sk(A,Gi)|
|S(A,Gi)|

= 1, and

αk
1

(k − 1)! |Gi|

|Sk(A,Gi)|
(1)

and γ(δ, Ai) are, respectively, upper and lower bounded uniformly for the
whole family. Condition (1) is technical and necessary in the proof of the
Theorem 3.1. Observe that the condition χ = (γ−1)|S(A,G)|+|Sk(A,G)| > 0
in the statement assures that the V-property ensures solutions in Sk(A,G).

4 Applications and further research

So far, authors have found results on the existence of configuration in subsets
by studying systems of configurations arising from integer linear systems in
[1, n] invariant by translations [19,3], integer linear systems over abelian groups
[18] or linear systems over finite fields [18]. These generalize the case for k-
term arithmetic progressions [1,3,20,18]. One of the key ingredients in the
proofs of these results that provides the V-property are arithmetic removal
lemmas for the appropriate context, such as the ones found in [4,8,20,14,13].

All these systems of configurations can be seen as prominent particular
cases of homomorphisms of finite abelian groups, context in which an arith-
metic removal lemma can be found in [26, Theorem 2]; these include linear
homothetic-to-a-point configurations in products of finite abelian groups. The
framework of homomorphisms also includes the configurations from the mul-
tidimensional Szemerédi setting [6,24], some of which have been treated in
[1,19].

The following theorem illustrates an application of Theorem 3.1 which can
not be directly obtained form the previously existing tools.

Theorem 4.1 (Rectangles in abelian groups) Let {Gi}i∈N be a sequence
of finite abelian groups, Hi, Ki subgroups of Gi and such that |Hi|, |Ki|, |Gi| →
∞ (i → ∞).

For each δ > 0 with δ < 1/40 there exist a C = C(δ) and an i0, depending
on the family {Gi, Hi, Ki}i∈N and on δ, for which the following holds.

Let

S(A,Gi) = {(x, x + a, x + b, x + a + b) with x ∈ Gi, a ∈ Hi, b ∈ Ki}

be the set of configurations. Assume that max{|Hi|, |Ki|} ≤ (|Sk(A,Gi)|/|Gi|)
2/3.



For each i ≥ i0 the number of sets free of configurations in Sk(A,G) and
with cardinality t such that

t >
C

δ

(

|Gi|
4

|Sk(A,Gi)|

)1/3

is bounded from above by
(

2δ|Gi|
t

)

.

When Gi = Z
2
i , Hi = Zi × {0}, Ki = {0} × Zi, then the bound on the

size t in Theorem 4.1 is, for i large enough, t > C ′′i4/3. The configurations
described in Theorem 4.1 correspond to the edge set of a C4–bipartite graph,
the extremal value of which is ≈ i3/2 as proved in Füredi and Hajnal [5]. This
shows that there is a wide range of values of t to which Theorem 4.1 gives
a meaningful bound. More generally, we can consider larger configurations
whose bounds for the configuration–free sets are connected to the Zarankiewicz
problem [5,11].

Other similar configurations that can be treated are the following ones. Let
G be a finite abelian group, G1 a subgroup of G and φ : G1 → G an injective
group homomorphism with a 6= ±φ(a) for each a ∈ G1. The configuration set
is the “slanted squares” {x, x + a, x + φ(a), x + a + φ(a) : x ∈ G, a ∈ G1}.

The same framework of Theorem 3.1 applies to count the number of
solution–free sets of equations of the form x1 · · · · · xk = 1 in finite non-
necessarily abelian groups by using the results in [12].

Another important application of Theorem 3.1 combined with the removal
lemma for group homomorphisms is the study of threshold functions for ana-
logues of combinatorial theorems holding in random subsets. More precisely,
for given δ > 0 and a system of configurations (A,G), we say that a set
B ⊆ G has the (δ, A,G)-Property if for all subset B′ ⊂ B, |B′| ≥ δ|B|
B′∩S(A,G) 6= ∅. We can study the previous property in the following random
model: fix a probability p (that may depend on |G|), and consider the bino-
mial random set Bp built by choosing independently each element of G with
probability p. By means of the bounds given by Theorem 3.1 we can obtain
estimates for the threshold value for p with respect to the (δ, A,G)-Property.
These results are in the line of [19, Theorem 2.2;2.3;2.4] (see also [2]).

All these applications are described in the forthcoming paper [16].
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[23] Szemerédi, E., On sets of integers containing no k elements in arithmetic
progression, Acta Arith. 27 (1975), pp. 199–245.

[24] Tao, T., Mixing for progressions in nonabelian groups, Forum Math. Sigma 1

(2013), pp. e2, 40.

[25] Varnavides, P., On certain sets of positive density, J. London Math. Soc. 34
(1959), pp. 358–360.

[26] Vena, L., On the removal lemma for linear configurations in finite abelian
groups, arXiv:1505.02280v1 [math.CO] .

http://www.math.uni-hamburg.de/home/schacht

	Introduction
	Definitions: system of configurations
	Main tool
	Applications and further research
	References

