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Abstract

Let Sg be the orientable surface of genus g. We show that the number of edge-
labelled cubic multigraphs embeddable on Sg with m = 3k edges is asymptotically

dgγ
−mm5/2(g−1)−1m!, where γ−1 =

√
79
3 2−1/3 and cg is a constant only dependent

on the genus.
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1 Introduction

1.1 Motivation

Since the seminal work of Tutte [14] graphs embedded on a surface, called
maps, have become widely studied. Starting by the number of planar maps
computed by Tutte [14], other classes of maps have been extensively studied;
for example the number of rooted maps on surfaces has been determined by
Bender, Canfield, and Richmond [1], and the number of triangulations on
arbitrary surfaces by Gao [9,8,7].

On the other hand, analogous problems for graphs that are embeddable on
a surface are still wide open. The first breakthrough result in this area is due
to McDiarmid, Steger, and Welsh [12] who first showed that the number pl(n)
of labelled planar graphs on n vertices has an exponential growth constant,
that is, (pl(n)/n!)1/n converges to a real number γ. Giménez and Noy [10]
determined the value γ through the singularity analysis of generating func-
tions arising from a constructive decomposition of planar graphs. They also
obtained limit laws for planar graphs with n vertices and m = μn edges with
μ ∈ (1, 3). In view of the classical Erdős-Rényi random graph the more inter-
esting regime is μ < 1, in particular μ ∼ 1

2
: a random graph with edge density

μ undergoes the so-called phase transition when μ ∼ 1
2
. Kang and �Luczak

[11] showed that random planar graphs feature an analogous phase transition
at μ ∼ 1

2
and derived the asymptotic number of planar graphs for the regime

μ < 1. The main ingredient in their proof is a constructive decomposition
that reduces the problem of counting planar graphs to counting cubic planar
multigraphs.

For graphs embeddable on a surface of positive genus g, Chapuy et al.
[3] determined the asymptotic number of such graphs with n vertices and μn
edges for the range μ ∈ (1, 3) and showed limit laws for this range similar to
the planar case. Again, μ < 1 is the more interesting regime from the point
of view of the evolution of random graphs and this regime 0 < μ < 1 has not
been studied.

1.2 Main results and techniques

In this work we derive the asymptotic number of cubic multigraphs embed-
dable on the orientable surface Sg.

Theorem 1.1 Let Gg(m) denote the number of cubic multigraphs embeddable



on the orientable surface Sg of positive genus g. Then for m divisible by 3

Gg(m) ∼ dg

(
21/33√
79

)−m
m5/2(g−1)−1m!,

where dg is a constant depending only on g.

This enumeration result is the essential part in the enumeration of graphs
embeddable on Sg for the regime μ < 1 [5]. Similar to the planar case, the
enumeration of graphs embeddable on Sg can be reduced to that of cubic
multigraphs embeddable on Sg using a constructive decomposition. This de-
composition is via cores and kernels. The core of a graph is the maximal
subgraph with minimum degree at least 2 and the kernel is the multigraph of
minimum degree at least 3 that has the core as a subdivision. When μ ∼ 1

2
,

typical kernels are cubic multigraphs. The reverse direction of this construc-
tion enables us to use the number of cubic multigraphs embeddable on Sg in
order to enumerate the graphs embeddable on Sg for the regime μ < 1 [5].

The first step in our proof is based on a decomposition of multigraphs
along connectivity, a construction that reduces the problem of counting cubic
multigraphs to counting cubic 3-connected graphs. In the planar case, 3-
connected graphs have a unique embedding and thus the enumeration of such
graphs is equivalent to the enumeration of the corresponding maps. This
relation between 3-connected graphs and maps does not hold for higher genus;
similar to Chapuy et al. [3], we instead use a classical result of Robertson and
Vitray [13] that guarantees the uniqueness of the embedding if the facewidth is
large enough. By showing that graphs with small facewidth do not contribute
to the leading term in the asymptotic number of 3-connected cubic graphs
embeddable on Sg, we can use the aforementioned result of Robertson and
Vitray and restrict our attention to 3-connected cubic maps on Sg. The dual
of such maps are triangulations in which some loops and double edges are
forbidden due to the 3-connectivity of the primal. We obtain the number of
those triangulations by relating them to simple triangulations as counted by
Gao [8]. The main tools in this step are surgeriesthat reduce the genus of the
surface.

2 Preliminaries and Notation

By g we will always denote the genus of the orientable surface Sg. A con-
nected (multi-)graph is called embeddable on Sg, if it has an embedding in
Sg such that every face is homeomorphic to a disc. A (multi-)graph is called
embeddable on Sg, if each of its connected components is embeddable on a



surface Sgi and all the genuses sum up to g. Furthermore all (multi-)graphs
will be cubic and edge-labelled, unless stated otherwise. In order to obtain the
desired asymptotic number of cubic multigraphs, we use generating functions
and singularity analysis. Our generating functions will always be exponential
generating functions F (y) =

∑ fm
m!
ym, where y marks edges and fm denotes

the number of (multi-)graphs in the class F that have m edges. Our aim is to
derive a system of relations between various generating functions and to apply
singularity analysis in order to obtain the desired asymptotics. To this end,
we will use the following notations. We write F (y) ∼ G(y) if the coefficients
of F and G satisfy fm

gm
→ 1 as m → ∞; F (y) � G(y) if fm < gm for all m and

fm
gm

→ 1 as m → ∞; and F (y) � G(y) if fm
gm

→ 0 as m → ∞.

As the uniqueness of the embedding of a 3-connected planar graph on the
sphere does not extend to surfaces of higher genus, we need an additional
concept, the facewidth of graphs and maps. The facewidth of a map is the
minimum number of intersections that a noncontractible circle has with the
map. The facewidth of a graph is the maximal facewidth of all its embeddings.

A classical result of Robertson and Vitray [13] says that 3-connected graphs
embeddable on Sg have a unique embedding up to orientation if their face-
with is at least 2g+3. Therefore we can enumerate 3-connected cubic graphs
embeddable on Sg whose facewidth is at least 2g + 3 by counting the corre-
sponding maps.

3 Deriving a constructive decomposition

3.1 Triangulations and 3-connected graphs

The duals of 3-connected maps on Sg are triangulations. The 3-connectivity of
the primal translates to the exclusion of some loops and double edges. Denote
the class of these triangulations by Mg. In order to count Mg, we develop
dominance relations between Mg and triangulations counted by Gao [8], espe-
cially with the number of simple triangulations Sg (i.e. triangulations without
loops and double edges). A series of surgeries on Sg yield dominance relations
between Sg, Mg, and some other intermediate classes of triangulations (see [4]
for details).

In this context a surgery is the operation of cutting the surface along a loop
or double edge and thereby either separating the surface into two surfaces of
smaller genus or decreasing the genus of the surface. By adding or removing
edges around the holes obtained by surgery we obtain triangulations. This
construction leads to dominance relations between triangulations before and



after the surgery. These dominance relations result in the asymptotic number
of triangulations in Mg.

The final step is to show that the number of all 3-connected cubic maps
with a fixed facewidth smaller that 2g+3 is asymptotically negligible compared
to the asymptotic number of 3-connected cubic maps with facewidth at least
2g+3. Thereby we derive the asymptotic number of 3-connected cubic graphs
embeddable on Sg.

3.2 Decomposing along connectivity

The constructive decomposition that allows us to obtain the number of cubic
multigraphs embeddable on Sg from the number of 3-connected cubic graphs is
based on the following theorem by Robertson and Vitray [13]: for k ∈ {2, 3},
every (k − 1)-connected graphs G embedded on Sg with facewidth at least k
has a unique k-connected component having the same genus and facewidth as
G, while all other k-connected components are planar.

By this theorem for k = 3, we can construct every 2-connected cubic
multigraph embeddable on Sg with facewidth at least 3 by first taking the 3-
connected component provided by the theorem and then replacing edges (u, v)
by a network—a 2-connected planar cubic multigraph—and an edge from this
multigraph to each of u and v. This results in a dominance (but not equality)
relation between the corresponding generating functions, because for planar
graphs, the component provided by the theorem of Robertson and Vitray
might depend on the embedding on Sg. However, we can derive an asymptotic
formula for 2-connected cubic multigraphs embeddable on Sg, g > 0, because
almost all such graphs are nonplanar and thus have a unique 3-connected
component independent of the embedding.

Analogously, the theorem of Robertson and Vitray for k = 2 allows us to
construct every connected cubic multigraph embeddable on Sg with facewidth
at least 2 by starting with a 2-connected cubic multigraph with the same genus
and facewidth and adding connected cubic planar multigraphs at some of its
edges. Again this yields a dominance relation between the corresponding gen-
erating functions, but we obtain an asymptotic formula by a similar argument
as above.

The connection between connected and general cubic multigraphs embed-
dable on Sg is a set construction. A general multigraph contains any number of
planar components and at most g connected components with positive genus.

The final step is to show that the number of multigraphs with small
facewidth is asymptotically negligible. By cutting the surface along a carefully



adjusted circle that witnesses the facewidth we obtain a dominance relation
for multigraphs with small facewidth, which in turn shows that the number
of these multigraphs is small.

3.3 Generating functions

The constructions above result in the following equations and dominance re-
lations for generating functions. We will denote facewidth conditions using
superscripts of the corresponding functions. From the decomposition relating
3-connected graphs and triangulations, we obtain

4y
d

dy
T fw≥3
g (y) ∼ 4y

d

dy
T fw≥2g+3
g (y) ∼ Mg(y) ∼ Sg(y),

where Tg(y) counts 3-connected graphs, Mg(y) counts their duals, and Sg(y)
counts simple triangulations on Sg. From the decomposition of 2-connected
multigraphs we get

Bfw≥3
g (y) � T fw≥3

g (y + yN(y)) ,

Bfw=2
g (y) � Bfw≥3

g (y),

N(y) =
1

2
S0 (y + yN(y)) ,

where Bg(y) counts 2-connected cubic multigraphs and N(y) counts networks.
The decomposition of connected cubic multigraphs yields

Cfw≥2
g (y) � Bfw≥2

g

(
y

1−Q(y)

)
,

Cfw=1
g (y) � Cfw≥2

g (y),

where Cg(y) counts connected cubic multigraphs and Q(y) counts the planar
multigraphs used in the decomposition and is given by the implicit equations

Q(y) =
Q2(y)

2
+

y3A

2
,

0 = 4− 52A2 + 336A3y3 + 240A4 + 1848A5y3 + A6(−448 + 3017y6)

−2400A7y3 + A8(256 + 1024y6) + 4096A9y9.

The decomposition of general cubic multigraphs yields

Gg(y) = eC0(y)
∑

∑
gi=g;gi>0

1

k!

k∏
i=1

Cgi(y).

Using standard methods of singularity analysis developed by Flajolet and
Odlyzko [6] we conclude



[yn]Tg(y) ∼ agγ
−m
T m5/2(g−1)−1,

[yn]Bg(y) ∼ bgγ
−m
B m5/2(g−1)−1,

[yn]Cg(y) ∼ cgγ
−m
C m5/2(g−1)−1,

[yn]Gg(y) ∼ dgγ
−m
C m5/2(g−1)−1,

where ag, bg, cg, and dg are computable constants depending only on g and
γT = 3

8
21/3, γB = 6

17
21/3, and γC = 3√

79
21/3 are constants independent of g. If

we are marking vertices instead of edges the growth constants can easily be
obtained replacing 3m by 2n. Note that the growth constants do not coincide
with the growth constants obtained in [2] as we are allowing multiple edges
and loops.

4 Further work

The Kernel-Core method described earlier allows a constructive decomposition
of all labelled graphs embeddable on Sg with n vertices and m = μn edges,
where μ < 1. This decomposition enables us to not only determine the number
of those graphs, but also obtain more insight into their structural properties
[5], e.g. the size of the largest component.
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