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Abstract

In this note we adapt a general result of Riordan [Spanning subgraphs of random
graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] from
random graphs to random r-uniform hypergaphs. We also discuss several span-
ning structures such as cube-hypergraphs, lattices, spheres and Hamilton cycles in
hypergraphs.
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1 Introduction

Finding spanning subgraphs is a well studied problem in random graph theory,
see e.g. the following monographs on random graphs [4,14]. In the case of
hypergraphs not so much is known and it is natural to study the corresponding
problems for hypergraphs.
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An r-uniform hypergraph H is a tuple (V,E), where V is its vertex set and
E ⊆ (

V
r

)
the set of edges in H. Further we write deg(v) for the degree of a

vertex v in H: deg(v) := |{e : v ∈ e}|, and Δ(H) denotes the maximum vertex
degree in H, i.e. Δ(H) := maxv∈V deg(v). We will consider two models of r-
uniform random hypergraphs H(r)(n, p) and H(r)(n,m). Formally, H(r)(n, p)
is the probability space of all labelled r-uniform hypergraphs with the vertex
set [n] where each edge e ∈ (

[n]
r

)
is chosen independently of all the other edges

with probability p. Similarly one defines H(r)(n,m) as the probability space
of all labelled r-uniform hypergraphs with the vertex set [n] and exactly m
edges and considers a uniform measure.

We will shortly write H for a random graph in one of these classes and all
probabilities are with respect to the corresponding model. For r = 2 these are
the standard models G(n, p) and G(n,m) respectively.

Let H = H(i) be a sequence of fixed r-uniform hypergraphs with n ver-
tices, where n = n(i) → ∞. Then we say that H contains the graph H
asymptotically almost surely (a.a.s.) if the probability that H(i) ⊆ H tends
to 1 as n tends to infinity (here H = H(r)(n, p) or H = H(r)(n,m)). We
say that p̂ is a threshold function if P[H ⊆ H(r)(n, p)] → 0 for p � p̂ and
P[H ⊆ H(r)(n, p)] → 1 for p � p̂ as n tends to infinity. Similarly one defines
a threshold function m̂ = m̂(n) in the model H(r)(n,m). It was shown by
Bollobás and Thomason [5] that all nontrivial monotone properties have a
threshold function. Since subgraph containment is a monotone property it is
natural to study the threshold functions for appearance of various structures
in random graphs and hypergraphs.

The case of fixed (hyper-)graphs was solved by Erdős and Rényi [10](balanced
case) and by Bollobás [3]. First spanning structures considered in graphs
were perfect matchings [11] and Hamilton cycles [4,17,23]. More recently, the
thresholds for the appearance of (bounded degree) spanning trees were studied
as well, for the currently best bounds see Montgomery [19,20].

Alon and Füredi [2] studied the question when the random graph G(n, p)
contains a given graph G of bounded maximum degree Δ hereby proving the
bound p ≥ C(lnn/n)1/Δ for some absolute constant C > 0. In [24] Riordan
proved quite a general theorem applicable to various graphs including hyper-
cubes and lattices. Finding thresholds for factors of graphs and hypergraphs
was long an open problem where breakthrough was achieved by Johansson,
Kahn and Vu [15]. Kahn and Kalai [16] have a general conjecture about the
thresholds for the appearance of a given structure (which roughly states that
the threshold p with P(G ⊆ G(n, p)) = 1/2 for containment of G is within
a factor of O(lnn) from pE at which the expected number of copies of G in



G(n, pE) is 1, where pE is the so-called expectation threshold).

When one turns to hypergraphs, so apart from perfect matchings and gen-
eral factors [15], the only other spanning structures that were studied more
recently are Hamilton cycles. One defines an �-overlapping Hamilton cycle as
an r-uniform hypergraph with n/(r− �) edges such that for some cyclic order-
ing of [n] and an ordering of the edges, every edge ei consists of r consecutive
vertices and for any two consecutive edges ei and ei+1 it holds |ei∩ei+1| = �. We
say that a hypergraph is �-hamiltonian if it contains an �-overlapping Hamil-
ton cycle (this always requires that r − � divides n). Frieze [13] determined
the threshold for the appearance of 1-overlapping 3-uniform Hamilton cycle
to be Θ(lnn/n2) (when 4|n) and Dudek and Frieze [7] extended the result to
higher uniformities (2(r− 1)|n). The divisibilty requirement was improved to
the optimal one ((r− 1)|n) by Dudek, Frieze, Loh and Speiss [9], see also Fer-
ber [12]. More recently, the threshold for the so-called Berge Hamilton cycles
was studied by Poole [22]. Moreover, Dudek and Frieze [8] determined thresh-
olds for general �-overlapping Hamilton cycles and a randomized algorithm
to find (r − 1)-overlapping Hamilton cycles was given in [1]. For the table of
the known thresholds we refer the reader to [8], but generally ω(n�−r) is an
asymptotically optimal threshold for �-Hamiltonicity (for � ≥ 2 and in most
situations even more precise results are known), where ω(f) is any function g
such that g(n)/f(n) → ∞ as n → ∞.

The purpose of this note is to observe that Riordan’s proof can be adapted
to r-uniform hypergaphs leading to a general theorem about spanning struc-
tures in random hypergraphs. We will recover results of Dudek and Frieze [8]
on �-hamiltonicity and also discuss thresholds for other spanning structures
such as hypergraph hypercubes, hyperlattices and spheres.

Let H be an r-uniform hypergraph with n vertices, one defines eH(v) =
max{e(F ) : F ⊆ H, |F | = v} and

γ(H) = max
r+1≤v≤n

{
eH(v)

v − 2

}
.

The following theorem in the case of r = 2 was proved by Riordan [24].
However the same conclusion applies to general r-uniform hypergraphs.

Theorem 1.1 Let r ≥ 2 be an integer and H = H(i) be a sequence of r-
uniform hypergraphs with n = n(i) vertices and e(H) = α

(
n
r

)
= α(n)

(
n
r

)
edges.

Let p = p(n) : N → [0, 1] and p
(
n
r

)
be an integer. If the following conditions



are satisfied

α

(
n

r

)
>

n

r
, p

(
n

r

)
→ ∞, (1− p)

√
n → ∞, (1)

and

npγ(H)Δ−4 → ∞, (2)

then a.a.s. the random r-uniform hypergraphs H(r)(n, p) and H(n, p
(
n
r

)
) con-

tain a copy of H.

For the proof we refer the reader to the full version of our paper [21].

We immediately obtain the following two corollaries. We state them only
in the model H(r)(n, p), but the corresponding statements follow immediately
for H(r)(n,m) with m = �p(n

r

)� by a standard argument, see [4,24].

Corollary 1.2 Let r, Δ ≥ 2 be integers and H = H(i) a sequence of r-uniform
hypergraphs with n = n(i) vertices, Δ(H) ≤ Δ, e(H) > n/r and γ(H) =
e(H)/(n−2). Then for p = ω

(
n−1/γ(H)

)
the random graph H(r)(n, p) contains

a copy of H a.a.s., while for every ε > 0 we have for p ≤ (1− ε)(e/n)1/γ that
P(H ⊆ H(r)(n, p)) → 0.

Proof. Since γ(H) ≤ (1 + o(1))Δ and by monotonicity of the graph con-
tainment property we may assume that p = o(1) and thus the conditions (1)
and (2) are satisfied. Since Δ is fixed, we obtain from Theorem 1.1 the first
part of the claim.

Let X be the number of copies of H in H(r)(n, p) and we estimate its
expectation E(X) as follows:

E(X) ≤ n!pe(H) ≤ 3
√
n(1− ε)e(H)(n/e)2 = o(1).

Now Markov’s inequality P(X ≥ 1) ≤ E(X) yields the second part of the
corollary. �

We call a hypergraph H d-regular if every vertex of H has degree d.

Corollary 1.3 Let r ≥ 2 be an integer and H = H(i) be a sequence of Δ-
regular r-uniform hypergraphs where Δ = ω(log(n)1−1/r) but Δ = o(n1/4).
Then for every ε > 0 we have that H(r)(n, p) contains a.a.s. H if p = (1 +
ε)n−r/Δ. Furthermore P(H ⊆ H(r)(n, p)) → 0 for p ≤ n−r/Δ, i.e. p = n−r/Δ

is a sharp threshold for the appearance of copies of H in H(r)(n, p).



Proof. Let X count the copies of H in H(r)(n, p) and for p ≤ n−r/Δ we have

P(X ≥ 1) ≤ E(X) ≤ n!n−re(H)/Δ = n!n−n = o(1).

Next we bound γ(H) as follows: Δ/r ≤ γ(H) ≤ Δ
r
(Δ1/(r−1)+1)

(Δ1/(r−1)−1)
. This is

obtained from the estimate eH(v) ≤ min{Δv/r,
(
v
r

)} by considering two cases

whether v ≤ Δ1/(r−1)+1 or not. Let ε ∈ (0, 1) and notice that (1) is satisfied.
It also holds that

n
(
(1 + ε)n−r/Δ

)γ(H)
Δ−4 ≥ (

(1 + ε)n1/γ(H)−r/ΔΔ−4r(1+o(1))/Δ
)γ(H) ≥(

(1 + ε)n−2r/(Δ1+1/(r−1))(1 + o(1))
)γ(H)

→ ∞,

and therefore Theorem 1.1 is applicable and the statement follows. �

2 Discussion of Theorem 1.1

Riordan’s argument for random graphs in [24] is an elegant second moment ar-
gument, where the variance of the random variable X that counts the number
of copies of H is estimated carefully by considering the contributions coming
from various possible intersections of any two copies of H in the complete r-
uniform hypergraph. The overall proof strategy of Theorem 1.1 is the same as
in [24] (one works in the model H(r)(n,m) and then conditions on the number
of edges in H(r)(n, p) to obtain a corresponding result for H(r)(n, p)). In fact,
most of the proof can be read along the lines of the original argument apart
from Lemmas 4.3 and 4.5 in [24] (and the auxiliary lemmas from [24] essen-
tially state the same but for hypergraphs). However, some complications arise
and in particular one needs to generalize Lemma 4.3 from [24] to hypergraphs
which requires more case distinctions. Moreover, Lemma 4.5 [24] can be gen-
eralized in that one replaces every edge in an r-uniform hypergraph with the
clique Kr and proves the lemma by counting trees in the shadow instead of
counting hypertrees.

Thus Theorem 1.1 (Corollaries 1.2 and 1.3) states that under some tech-
nical conditions the threshold for the appearance of the spanning structure
comes from the expectation threshold defined in the introduction. Further it
should be noted that the appearance of 1-overlapping Hamilton cycles and also
perfect matchings and of general F -factors the structure in question appears
as soon as some local obstruction (isolated vertices, no vertices in some copy
of a fixed graph F ) disappears. Thus, there seem to be two types of behaviour



that are responsible for the threshold for the appearance of a bounded degree
spanning structure.

3 Applications

In the following we derive asymptotically optimal thresholds for the appear-
ance of various spanning structures in H(r)(n, p) which are consequences of
the Corollaries 1.2 and 1.3.

3.1 Hamilton Cycles

The following is a slightly weaker version of Dudek and Frieze [8].

Corollary 3.1 For all integers r > � ≥ 2, (r − �)|n and p = ω(n�−r) the
random hypergraph H(r)(n, p) is �-hamiltonian a.a.s.

Proof. Denote by C(r,�) an �-overlapping Hamilton cycle on n vertices. It
is not difficult to see that γ(C(r,�)) = n

(r−�)(n−2)
. Indeed, let V ⊆ [n] be a

set of size v < n. Then C(r,�)[V ] is a union of vertex-disjoint �-overlapping
paths, where an �-overlapping path of length s consists of s(r− �)+ � ordered
vertices and edges are consecutive segments intersecting in � vertices. This
gives: e(C(r,�)[V ]) ≤ (v − �)/(r − �) and from v−�

(r−�)(v−2)
≤ n

(r−�)(n−2)
we get

γ(C(r,�)) = n
(r−�)(n−2)

.

Since e(C(r,�)) > n/r, Δ(C(r,�)) = � r
r−�

� and n2(r−�)/n → 1, Corollary 1.2
implies the statement. �

3.2 Cube-hypergraphs

The r-uniform d-dimensional cube-hypergraph Q(r)(d) was studied in [6] and
its vertex set is V := [r]d and its hyperedges are r-sets of the vertex set V
that all differ in one coordinate. Thus, Q(r)(d) has rd vertices, drd−1 edges
and is d-regular. In the case r = 2 this is the usual definition of the (graph)
hypercube. The following corollary is a direct consequence of Corollary 1.3.

Corollary 3.2 For all integers r ≥ 2, ε > 0 and p = r−r + ε it holds
P(Q(r)(d) ⊆ H(rd, p)) tends to 1 as d tends to infinity. On the other hand,
P(Q(r)(d) ⊆ H(rd, r−r)) → 0 as d → ∞.

We remark that in the case r = 2 Riordan [24] proved even better depen-
dence of ε on d, and similar dependence can be shown for r > 2.



3.3 Lattices

Another example considered in [24] was the graph of the lattice Lk, whose
vertex set is [k]2 and two vertices are adjacent if their Euclidean distance is
one. There it is shown that p = n−1/2 is asymptotically the threshold. One can
view Lk as the cubes Q(2)(2) (these are cycles C4) glued ‘along’ the edges. We
define the �-overlapping hyperlattice L(r)(�, k) as the r-uniform hypergraph
where we glue together (k− 1)2 copies of Q(r)(2) that overlap on � hyperedges
accordingly. Thus, L(2)(1, k) is just the usual graph lattice Lk.

Corollary 3.3 Let r ≥ 2 and k be an integer. For p = ω
(
n−1/2

)
(where

n = (k−2+r)2) the random r-uniform hypergraph H(r)(n, p) contains a copy of
L(r)(r−1, k) a.a.s. Moreover, for p = n−1/2, P(L(r)(r−1, k) ⊆ H(r)(n, p)) → 0
as k (and thus n) tends to infinity.

Proof. Observe that L := L(r)(r − 1, k) has (k − 2 + r)2 vertices (which can
be associated with [k − 2 + r]2) and 2(k − 1)(k − 2 + r) edges.

We aim to show that eL(v) ≤ 2(v− r) for all v ≥ r+1. We argue similarly
as in [24]. Observe that eL(v) ≤ 2 for v = r + 1. Let now L′ be an arbitrary
subhypergraph of L on v+1 ≤ (k−2+r)2 vertices such that e(L′) = eL(v+1).
It is easy to see that there is a vertex of degree 2 in L′ (take (i, j) such that
(i + 1, j), (i, j + 1) �∈ V (L′)). It follows that then eL(v + 1) ≤ eL(v) + 2 for
v > r + 1 giving eL(v) ≤ 2(v − r) for all v ≥ r + 1.

It follows that γ(L) ≤ 2 and applying Theorem 1.1 with npγ = ω(1) yields
the first part. Markov’s inequality yields the second part. �

3.4 Spheres

Let r ≥ 3 and let G be a planar graph on n vertices with a drawing all of whose
faces are cycles of length r. We define a sphere Sr

n as an r-uniform hypergraph
all of whose edges correspond to the faces of that particular drawing (note that
a sphere is not unique). Observe that we get from Euler’s formula for planar
graphs the condition 2v(Sr

n)− 4 = (r − 2)e(Sr
n).

Corollary 3.4 Let r ≥ 3 and S be some sphere Sr
n with Δ = Δ(Sr

n). Then for
p = ω

(
Δ2r−4n−(r−2)/2

)
the random r-uniform hypergraph H(r)(n, p) contains

a copy of S a.a.s.

Proof. From Euler’s formula it follows that eS(v) ≤ 2v−4
r−2

and therefore
γ(S) = 2/(r − 2). Since this is an upper bound for the number of r-edges
in this induced hypergraph we immideately get γ = 2/(r− 2). The statement
follows now directly from Theorem 1.1. �



3.5 Powers of Hamilton cycles

Consider an (r− 1)-overlapping Hamilton cycle C(r,r−1) with n vertices which
are ordered cyclically. Given an integer i, we define an i-th power C(r)(i) of
C(r,r−1) to consist of all r-tuples e such that the maximum distance in this
cyclic ordering between any two vertices in e is at most r + i − 2. In the
graph case, the threshold for the appearance of C(2)(i) follows from Riordan’s
result [24] for i ≥ 3 (see [18]) and in the case i = 2 an approximate threshold
due to Kühn and Osthus [18] is known. If we count the edges of C(r)(i) by
their leftmost vertex we get e(C(r)(i)) = n

(
r+i−2
r−1

)
.

Theorem 3.5 Let r ≥ 3 and i ≥ 2 be integers. Suppose that p = ω(n−1/(r+i−2
r−1 )),

then the random hypergraph H(r)(n, p) contains a.a.s a copy of C(r)(i). This
threshold is asymptotically optimal.

Proof. One can argue similarly to Proposition 8.2 in [18] to show γ(C(r)(i)) ≤(
r+i−2
r−1

)
+Or,i(1/n). The statement follows from Theorem 1.1. �
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