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Abstract

Motivated by questions concerning optical networks, in 2003 Gargano, Hammar,
Hell, Stacho, and Vaccaro defined the notions of spanning spiders and arachnoid
graphs. A spider is a tree with at most one branch (vertex of degree at least 3).
The spider is centred at the branch vertex (if there is any, otherwise it is centred
at any of the vertices). A graph is arachnoid if it has a spanning spider centred
at any of its vertices. Traceable graphs are obviously arachnoid, and Gargano et
al. observed that hypotraceable graphs (non-traceable graphs with the property
that all vertex-deleted subgraphs are traceable) are also easily seen to be arachnoid.
However, they did not find any other arachnoid graphs, and asked the question
whether they exist. The main goal of this paper is to answer this question in the
affirmative, moreover, we show that for any prescribed graph H, there exists a
non-traceable, non-hypotraceable, arachnoid graph that contains H as an induced
subgraph.
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1 Introduction

All graphs considered in this paper are finite, simple, and connected. For a
graph G, V (G) and E(G) denotes the set of vertices and the set of edges
of G, respectively. Let X, Y ⊆ V (G), v ∈ V (G). Then dG(v) is the degree
of v in G, dG(X, Y ) denotes the number of edges between X and Y in G,
dG(X) := dG(X, V (G) \X). The subgraph of G induced by the vertex set X
is denoted by G[X] and G − X := G[V (G) \ X], G − v := G − {v} for any
v ∈ V (G) and for e ∈ E(G), G− e denotes the graph obtained by deleting e
from E(G). G ∪H denotes the disjoint union of graphs G and H. Actually,
we also use this notation for the graph with vertex set V (G)∪V (H) and edge
set E(G) ∪ E(H) if G and H are subgraphs of the same graph.

The leaf number of a graph G, denoted by l(G) is the number of vertices of
degree 1 in G. The minimum leaf number of a graph G, denoted by ml(G) is
the minimum number of leaves of the spanning trees of G. The path-covering
number of G, denoted by μ(G) is the minimum number of vertex-disjoint
paths that cover the vertices of G (a path may consist of just one vertex).
The branch number of G, denoted by s(G) is the minimum number of branch
vertices (vertices of degree at least 3) of the spanning trees of G. Each of these
graph parameters play an important role in designing cost-efficient optical
networks ([6], [2]) and they are all NP-hard to compute, because of their
straightforward connection to traceability of graphs. Gargano, Hammar, Hell,
Stacho, and Vaccaro [2] defined the notion of spanning spiders : these are
spanning trees with at most one branch. The spider is centred at the branch
vertex (if there is any, otherwise it is centred at any of the vertices). They
studied the parameter s(G) and graphs with s(G) ≤ 1. They also defined
arachnoid graphs; these are graphs that have a spanning spider centred at
any of their vertices. Traceable graphs are obviously arachnoid, and Gargano
et al. observed that hypotraceable graphs (non-traceable graphs with the
property that all vertex-deleted subgraphs are traceable, see [7], [8]) are also
easily seen to be arachnoid [2]. However, they did not find any other arachnoid
graphs, and asked the question whether they exist. The main goal of this
paper is to answer this question in the affirmative, moreover, we show that
for any prescribed graph H, there exists a non-traceable, non-hypotraceable,
arachnoid graph that contains H as an induced subgraph.
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2 Path-critical graphs

First we construct graphs G for any μ ≥ 1 with the property μ(G − v) =
μ(G) − 1 = μ for each v ∈ V (G) (these will be called path-critical graphs).
The existence of such graphs is far from from obvious: for μ = 1 these are
the hypotraceable graphs, whose existence was an open problem till 1975,
when Horton found such a graph on 40 vertices (see [10], [8]) disproving the
conjecture of Kapoor, Kronk, and Lick [5]. Actually, even the existence of
graphs without concurrent longest paths was an open question from 1966 to
1969 (raised by Gallai [1] and settled by Walther [9]).

For the construction we need the notion of J-cells [4].

Definition 2.1 A pair of vertices (a, b) of a graph G is said to be good if there
exists a Hamiltonian path of G between them. A pair of pairs of vertices of
G ((a, b), (c, d)) is said to be good if there exists a spanning subgraph of G
consisting of two vertex-disjoint paths, one between a and b and another one
between c and d.

Definition 2.2 (Hsu, Lin [4]) The quintuple (H, a, b, c, d) is a J-cell if H is a
graph and a, b, c, d ∈ V (H), such that

(i) The pairs (a, d), (b, c) are good in H.

(ii) None of the pairs (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d))
are good in H.

(iii) For each v ∈ V (H) there is a good pair in H − v among (a, b), (a, c),
(b, d), (c, d), ((a, b), (c, d)), ((a, c), (b, d)).

J-cells can be obtained by deleting two adjacent cubic vertices of a hypohamil-
tonian graph (non-hamiltonian graph, such that all vertex-deleted subgraphs
are hamiltonian, see [3]), as was observed by Thomassen, who used J-cells to
construct 3-connected hypotraceable graphs [8]. Here we generalize this con-
struction. The smallest J-cell is obtained from the Petersen graph by deleting
two adjacent vertices.

Let Fi = (Hi, ai, bi, ci, di) be J-cells for i = 1, 2, . . . , k. Now we define the
graphs Gk as follows. Gk consists of vertex-disjoint copies of the graphs
H1, H2, . . . , Hk, the edges (bi, ai+1), (ci, di+1) for all i = 1, 2, . . . k − 1, and the
edges (bk, a1), (ck, d1). We will consider the graphs Hi as (induced) subgraphs
of Gk.

Now we explore some useful properties of spanning trees and paths of Gk.

Claim 2.3 Let T be a spanning tree of Gk. Then there are at most two indices



i, such that all vertices in V (Hi) has degree 2 in T .

Proof. Suppose that all vertices in (say) V (H1) has degree 2 in T . Then
dT (H1) must be even (since dT (H1) =

∑
v∈V (H1)

d(v) − 2|E(T [V (H1)])| =
2|V (H1)| − 2|E(T [V (H1)])|), thus dT (H1) is 2 or 4. If dT (H1) = 2, then
T [V (H1)] is a hamiltonian path of H1 and by the second property of J-cells
the endvertices of the path are either a1 and d1 or b1 and c1 (w.l.o.g. assume
they are a1 and d1). Therefore the edges leaving V (H1) in T are (bk, a1) and
(ck, d1), thus there are no edges between V (H1) and V (H2) in T . If dT (H1) = 4,
then T [V (H1)] is a spanning subgraph of H1 consisting of two vertex-disjoint
paths. By the second property of J-cells, the endvertices of one of the paths
are a1 and d1 and the endvertices of the other path are b1 and c1. Thus in
this case there is no path between a1 and b1 in T [V (H1)]. It is clear now that
if there is an index i �= 1, 2, such that all vertices in V (Hi) has degree 2 in T ,
then T is not connected, a contradiction. �

Claim 2.4 Let l ≥ 2. Then ml(G2l+1) ≥ l + 1.

Proof. Assume to the contrary that G2l+1 has a spanning tree T with at most
l leaves. Then the number of vertices of degree at least 3 in T is at most l−2,
thus the number of vertices not having degree 2 is at most 2l− 2. This means
that there are at least three indices i, such that V (Hi) only contains vertices
of degree 2 in T , a contradicition by Claim 2.3. �

Claim 2.5 G4 has a hamiltonian path P , such that there is no edge of P
between H1 and H4 and for any vertex v ∈ V (G5) there is a hamiltonian path
P of G5 − v, such that there is no edge of P between H1 and H5.

Proof. The first part of the claim is easy to see: there is a hamiltonian path
of Hi between bi and ci and a hamiltonian path of Hi+1 between ai+1 and di+1,
by the first property of J-cells, thus H1 ∪ H2 and H3 ∪ H4 are hamiltonian,
therefore there is a hamiltonian path P1 of H1 ∪ H2 starting at b2 and a
hamiltonian path P3 of H3 ∪H4 starting at a3. Now E(P1) ∪ (b2, a3) ∪ E(P3)
is a hamiltonian path of G4 without edges between H1 and H4. Let now
F = (H, a, b, c, d) be any of the J-cells used in the construction of G5 and
let us check whether (a, b), (a, c), (b, d), (c, d), ((a, b), (c, d)), or ((a, c), (b, d))
is good in H − v. Let us number the J-cells used to construct G5, such
that H3 = H in the first four cases, and H2 = H in the last two cases. If
(a, b) = (a3, b3) is good in H3− v, then let P be a hamiltonian path of H3− v
between a3 and b3. We have seen that Hi ∪ Hi+1 is hamiltonian, therefore
Hi ∪Hi+1 has a hamiltonian path starting at any of its vertices. Let P1 be a
hamiltonian path of H1 ∪H2 starting at b2 and let P4 be a hamiltonian path



of H4 ∪H5 starting at a4. Then E(P1) ∪ (b2, a3) ∪ E(P ) ∪ (b3, a4) ∪ E(P4) is
the edge set of a hamiltonian path of G5 − v and does not contain any edges
between H1 and H5. The cases when (a, c), (b, d), or (c, d) is good is dealt
with similarly. If ((a, b), (c, d)) = ((a2, b2), (c2, d2)) is good in H2 − v, then
let Q be the union of the vertex-disjoint a − b and c − d paths that cover all
vertices of H2− v. Let furthermore Q1 be a hamiltonian path between b1 and
c1 in H1, and Q3 be a hamiltonian path between d3 and either b3 or c3 (say
w.l.o.g. b3) in G3 − a3. Q1 and Q3 exist since F1 and F3 are J-cells. Then
E(Q1)∪ (b1, a2)∪ (c1, d2)∪E(Q)∪ (b2, a3)∪ (c2, d3)∪E(Q3)∪ (b3, a4)∪E(P4)
is again the edge set of a hamiltonian path of G5 − v that does not contain
any edges between H1 and H5. The case when ((a, c), (b, d)) is good is dealt
with similarly. �

Theorem 2.6 For any v ∈ V (G4k+5) we have μ(G4k+5−v) = μ(G4k+5)−1 =
k + 1, thus G4k+5 is path-critical for k ≥ 1.

Proof. Let us denote G4k+5[∪m
i=nV (Hi)] by G(n,m) for 1 ≤ n < m ≤ 4k + 5.

It is obvious that if n �= 1 or m �= 4k + 5, then G(n,m) is isomorphic to
some graph Gm−n+1− (bm−n+1, a1)− (cm−n+1, d1), thus G(n,m) is traceable if
m = n+ 3 and G(n,m)− v is traceable for any v ∈ G(n,m) if m = n+ 4 by
Claim 2.5. Since G(1, 4), G(5, 8), . . . , G(4k − 3, 4k) and G(4k + 1, 4k + 5)− v
are all traceable, the vertices of G4k+5 − v can be covered by k + 1 vertex-
disjoint paths, that is μ(G4k+5 − v) ≤ k + 1 for any v ∈ V (G). On the
other hand, we show that μ(G4k+5) ≥ k + 2. Assume to the contrary that
there are at most k + 1 vertex-disjoint paths that cover the vertices of G4k+5.
Since G4k+5 is connected, it is possible to add some (at most k, but it is
irrelevant) edges to these paths to obtain a spanning tree of G4k+5 with at
most 2k+2 leaves. On the other hand, by Lemma 2.4, ml(G4k+5) ≥ 2k+3, a
contradiction. Since for any graph G, μ(G) ≤ μ(G−v)+1 is obvious, we have
k + 1 ≤ μ(G4k+5)− 1 ≤ μ(G4k+5 − v) ≤ k + 1, and the theorem is proved. �

The graphs Gk possess some other interesting properties; these are omitted
here, due to lack of space.

3 Arachnoid graphs

Now it is not difficult to find non-traceable, non-hypotraceable, arachnoid
graphs. Let Gj

k be the graph obtained from Gk by adding j new vertices
u1, u2, . . . , uj and edges between ui and every vertex of Gk to Gk for i =
1, 2, . . . , j.



Theorem 3.1 Gk
4k+5 is an arachnoid graph that is neither traceable, nor hy-

potraceable for any k ≥ 1.

Proof. Let G = Gk
4k+5. We have to show that for any w ∈ V (G), G has a

spanning spider centred at w. Let v be a neighbour of w, such that v ∈ G4k+5

(such a v clearly exists). Now by Theorem 2.6, the vertices of G4k+5 − v can
be covered by k + 1 vertex-disjoint paths, thus using the vertices u1, . . . , uk

(that are all connected to all vertices of G4k+5) a hamiltonian path of G − v
is easy to obtain. Now by adding the edge (v, w) to this path we obtain a
spanning spider of G centred at w, therefore G is arachnoid, indeed.

Now we show that G is not traceable. Assume to the contrary that there
exists a hamiltonian path P of G and let us delete the vertices u1, . . . , uk from
P . We obtain at most k + 1 vertex-disjoint paths, such that they cover the
vertices of G4k+5, which is a contradiction, by Theorem 2.6.

Finally, we have to show that G is not hypotraceable. It is easy to see that
G−ui is not traceable, the proof is the same as the proof of the non-traceablity
of G (by deleting the ui’s we would obtain at most k paths, instead of at most
k + 1). �

It is easy to see that adding any edges between the ui’s does not make the
graph either traceable or hypotraceable (while the arachnoid property is obvi-
ously preserved), therefore we can obtain a non-traceable, non-hypotraceable,
arachnoid graph that contains any prescribed graph H as an induced sub-
graph.

Gargano et al. also proposed the more general problem whether there exist
arachnoid graphs containing a vertex v, such that v is the center of only
spanning spiders S, for which dS(v) ≥ 4. This question is still open. Now
that we have seen new arachnoid graphs, it is worth asking whether there are
arachnoid graphs containing several vertices v, such that v is the center of
only spanning spiders S, for which dS(v) ≥ d for some fixed d ≥ 4.
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