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Abstract

Motivated by a conjecture of Gyárfás, recently Böttcher, Hladký, Piguet, and Taraz
showed that every collection T1, . . . , Tn of trees on n vertices with

∑n
i=1 e(Ti) ≤

(

n
2

)

and with bounded maximum degree, can be packed into the complete graph on
(1 + o(1))n vertices. We generalize this result where we relax the restriction of
packing families of trees to families of graphs of any given non-trivial minor closed
class of graphs.
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1 Introduction and main result

A packing of a sequence of graphs F = (F1, . . . , Fn) into a graph H is a collec-
tion of edge-disjoint subgraphs H1, . . . , Hn ⊆ H , such that Hi is isomorphic
to Fi for every i ∈ [n]. A well-known conjecture of Gyárfás [4] states that a
sequence of trees T = (T1, . . . , Tn), where v(Ti) = i for every i ∈ [n], packs
into Kn. Note that the sum of the edges over T is precisely

(

n
2

)

, hence the
packing of T should use all the edges of Kn. A restricted approximate version
where the host graph is a clique on (1 + o(1))n vertices and the trees have at
most n vertices, bounded maximum degree, and the sum over all edges is at
most

(

n
2

)

, was proved by Böttcher, Hladký, Piguet, and Taraz [3]. We extend
this result to sequences of graphs from any non-trivial minor closed family.

Theorem 1.1 For any ε > 0, ∆ ∈ N, and any non-trivial minor closed

family G there exists n0 ∈ N such that for every n ≥ n0 the following holds.

If F = (F1, . . . , Fn) is a sequence of graphs from G, each having order at

most n and maximum degree at most ∆, such that
∑n

i=1 e(Fi) ≤
(

n
2

)

, then F
packs into K(1+ε)n.

The main idea in the proof is to remove a small separator from each graph,
in such a way that all components have small constant size, then pack the
components into a large clique contained into K(1+ε)n and use the remaining
vertices for the separators. In fact we prove a more general result and derive
Theorem 1.1 from that, and the Separator Theorem of Alon, Seymour, and
Thomas [1]. We define a (δ, s)-separable family as a set of graphs each hav-
ing the property that by removing δ-proportion of the vertices, the resulting
components have order at most s.

Theorem 1.2 For any ε > 0 and ∆ ∈ N there exists δ > 0 such that for

every s ∈ N and any (δ, s)-separable family G there exists n0 ∈ N such that for

every n ≥ n0 the following holds. If F = (F1, . . . , Fn) is a sequence of graphs

from G each having order at most n and maximum degree at most ∆, such

that
∑n

i=1 e(Fi) ≤
(

n
2

)

, then F packs into K(1+ε)n.

As mentioned above, Theorem 1.1 easily follows from Theorem 1.2. In fact,
the Separator Theorem states that for any minor closed family G there exists
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a constant cG such that a graph G ∈ G of order n has a separator of size
at most cGn

1/2 and the components have order at most n/2. Applying such
result recursively to each component, for i > 0 iterations, leads to a separator
U ⊆ V (G) such that

|U | ≤ cGn
1/2 + · · ·+ 2i−1cG

( n

2i−1

)1/2

= cGn
1/2

√
2
i − 1√
2− 1

< 3cGn
1/2 2i/2

and each component of G − U has order at most n/2i. For given δ > 0 we
can apply this with i =

⌊

2 log2
(

δn1/2/3c
)⌋

and obtain a separator U of size at
most δn, and a set of components all of which have order at most 18c2G/δ

2. This
shows that the minor-closed family G is

(

δ, 18c2G/δ
2
)

-separable for any δ > 0.
Hence, we can apply Theorem 1.2, and Theorem 1.1 follows.

2 Sketch of the proof

We provide a sketch of the proof of Theorem 1.2 in which we ignore the choice
of the parameters and focus on the construction of the packing. We assume
that for ε and ∆ we are given a sequence F (from some appropriate (δ, s)-
separable family G) that satisfies the assumptions of the theorem, and that n
is sufficiently large. We consider each graph Fi of the sequence together with
a fixed (δ, s)-separation (Ui, Ci), where Ui ⊆ V (Fi) is the separator and has
size |Ui| ≤ δv(Fi), and Ci is the component graph, i.e., the subgraph of Fi

induced on V (Fi)\Ui, where each component C has order at most s. We
define the boundary ∂C of a component C as the subset of the vertices that
are adjacent to the separator, and more generally the boundary of a set of
components as the union of the boundary sets of all its elements.

The vertices of the host graph K(1+ε)n will be split into a large part X of
order (1 + ξ)n for some carefully chosen ξ = ξ(ε,∆) > 0, and a small part
Y = V \X. We will pack the component graphs {Ci}i∈[n] into the clique KX

spanned on X, the sets {Ui}i∈[n] into the clique KY spanned on Y , and use
the edges of the complete bipartite graph KX,Y induced by X and Y for the
necessary connections. Since every edge of KX,Y can be used only once in the
packing, we will make sure that each vertex of X will only host a few vertices
from the boundary of F .

2.1 Packing the component graphs

The packing of {Ci}i∈[n] consists of two steps: the assignment and the em-
bedding. In the assignment phase we group the components by isomorphism



types, decompose KX into such graphs, and assign each component to one of
its copies in the decomposition. In the embedding phase we actually “place”
the copies of the components somewhere into KX , i.e., we assign the copies of
the components to the vertices of KX . We will do this by randomly choosing
a permutation of the vertices, and show that with positive probability the re-
sulting packing is balanced in the sense that no vertex of KX hosts too many
boundary vertices.

The main idea in the assignment phase is to decompose KX into smaller
graphs isomorphic to the components in {Ci}i∈[n] and assign each component
to one of its copies in the decomposition. However, two components from
the same graph must be mapped vertex disjointly by definition, so we need
a decomposition that can be partitioned into (preferable perfect) matchings.
For that we apply a result by Ray-Chaudhuri and Wilson [5] that states that
for m ≥ 2 and sufficiently large n, if the necessary divisibility conditions are
met, then there exists a resolvable Km-decomposition of Kn, i.e., a decom-
position that can be partitioned into Km-factors. For general G, resolvable
decompositions do not necessarily exist. However, due to Alon and Yuster
[2], we can decompose a Kn into G in such a way that almost all matchings
contain a large number of copies of G, if the divisibility conditions are satisfied
and n is sufficiently large.

Let S = {S1, . . . , Sσ} be the set of graphs on at most s vertices and maxi-
mum degree at most ∆ isomorphic to some component in {Ci}i∈[n],
with e(S1) ≥ · · · ≥ e(Sσ). We assume that X has size (1 + ξ)n for some
appropriately chosen ξ. We will decompose a subgraph KN of KX with
(1+ ξ

2
)n ≤ N ≤ (1+ ξ)n such that there exist m and ℓ with s ≪ ℓ ≪ m ≪ N ,

for which KN has a resolvable Km-decomposition Dm,N , Km has a resolv-
able Kℓ-decomposition Dℓ,m, and Kℓ can be decomposed into S in such a way
that at least (1 − ζ) (ℓ−1)v(S)

2e(S)
matchings of the decomposition DS,ℓ contain at

least (1 − ζ)ℓ/v(S) copies of S, where S is any graph from S and ζ is an
appropriately chosen constant.

We shall pack the component graphs {Ci}i∈[n] into KN one by one in such
a way that each Ci is completely contained in one of the Km-factors of KN .
Roughly speaking, for each Ci we group the components by isomorphism types,
and for every such isomorphism type S ∈ S we allocate an S-matching in suffi-
ciently many copies of Km. Since for different graphs in {Ci}i∈[n] we may need
to use the same Km for hosting different graphs from S, we decompose Km

into copies of Kℓ. This way, given different S and S ′ from S, we may allocate
an S-matching in Km by using an S-decomposition into one Kℓ-factor, and
an S ′-matching in the sameKm by using an S ′-decomposition in a different Kℓ-



factor. We proceed this way until essentially all edges of the given Km-factor
are used. At this point we switch to the next Km-factor in KN and proceed
the same way. In order to keep the amount of unused edges small in such a
change of Km-factors, we have to make sure that all Km’s in such a factor are
populated by component graphs Ci in a balanced way. This will be achieved
by choosing the copies of Km for each Ci among those that have the least
number of used edges. We now describe the assignment of the components of
a graph in detail.

For the set of components Ci of Fi and for a graph S ∈ S, we defineMi(S) as
the number of copies of Km we shall reserve for embedding all the components
isomorphic to S from Ci into KN . Note that we ignore the S-matchings that
contain less than (1 − ζ) ℓ

v(S)
copies of S. We assign the components of Ci

to the current Km-factor, in which the Km’s are considered to be ordered
starting from the one in which the least number of edges has been allocated
to some of the previous component graphs. Moreover, in each Km we have
for every S ∈ S a current Kℓ-factor in which all Kℓ’s are S-decomposed. We
assign the components of Ci to Mi =

∑σ
s=1Mi(Ss) of these Kℓ-factors each

from a different Km as described below.

We start by picking the first Mi copies of Km in the current Km-factor and
assign each of them a graph from S isomorphic to some component of Ci.
Recall that the Km’s are ordered from the one with the most number of
available edges to that with the most number of used edges, and the graphs
in S are ordered from the densest to the sparsest. Hence, by assigning S1 to the
firstMi(S1) copies ofKm, S2 to the nextMi(S2) copies, and so on, we maintain
an “approximately balanced” assignment to the current Km-factor. Once we
decide which S goes to which Km, we look at the current S-decomposed Kℓ-
factor in the respective Km’s and allocate a large S-matching to which we
assign the components from Ci that are isomorphic to S.

Before we repeat the procedure for Ci+1, we update our workspace as fol-
lows. For every Kℓ-factor we just used for the components from Ci isomorphic
to some S we check whether it contains another large S-matching that has
not been allocated yet. Note that each time we consider a Kℓ-factor for the
assignment we use all the Kℓ’s contained in it, hence the S-matchings get ex-
hausted in all the Kℓ’s at the same moment. If all the large S-matchings have
been used, then we pick a new Kℓ-factor, if available, in the same Km. To
each newly selected Kℓ we apply DS,ℓ, and this becomes the current Kℓ-factor
for S in this Km. If we are in the situation that there is no available Kℓ-
factor in at least one of the Km’s, then we consider the Km’s of this Km-factor
in KN as completely used, and we will show that the “balancing procedure”



described above ensures that most Km’s are “almost full”. At this point we
replace our current Km-factor with a new one, and in each Km we set up
current Kℓ-factors for each S ∈ S.

The procedure above produces an assignment of the components in {Ci}i∈[n]
to their copies inside KN such that all components from each Ci are vertex
disjoint. It is left to show that there is enough room for all the component
graphs, i.e., that the edges we waste in the assignment procedure plus those
contained into the S-matchings that were not used because they contained too
few copies of S are fewer than the additional edges we allow by considering KN

instead of Kn. In order to determine the number of edges wasted in the
assignment procedure, observe that a Km is considered to be full when for
some S there is no large S-matching available in the current Kℓ-factor and all
other Kℓ-factors in that Km have been used, or are currently reserved for some
other S ′ ∈ S. At this moment, in the worst case all current Kℓ-factors are
empty, hence the waste is at most σm

ℓ

(

ℓ
2

)

. Since we pick the least used Km’s,
we may assume that in every other Km of the current Km-factor we have the
same waste, yielding a total waste of N

m
σm

ℓ

(

ℓ
2

)

pairs in the Km-factor, and

hence σ ℓ−1
m−1

(

N
2

)

edges in the whole KN . As for the edges contained in small S-

matchings, one can show that their total number is at most (ζ − ζ2)
(

N
2

)

. By
our choice of m and ζ we have that the total number of unused edges in KN

σ
ℓ− 1

m− 1

(

N

2

)

+ (ζ − ζ2)

(

N

2

)

is smaller than
(

N
2

)

−
(

n
2

)

. This shows that all component graphs in F fit
into KN .

For the actual embedding, i.e., the assignment of the copies of the com-
ponents to the vertices of KN , we have to make sure that each vertex of KN

hosts at most ξn vertices from the boundary of F . For that we will first pick
a random permutation of the Km’s in each Km-factor, and then a random
permutation of the vertices inside each Km.

We define a labelling of the Km’s in the assignment by assigning each Km

the (unordered) sequence of the boundary degrees of its vertices, i.e., for each
vertex in the Km we count how many times it was used for the embedding of
a boundary vertex. For some appropriately chosen constant η we say that a
label is common if at least η

2m
N(N−1)
m(m−1)

Km’s have that label and rare otherwise.
We shall also use η as the multiplicative error in the following applications of
Chernoff’s inequality.

Given the Km-decomposition of KN , we look at one vertex v and choose



the Km’s incident to v by randomly picking one Km in each Km-factor. Some
applications of Chernoff’s inequality show that with positive probability, for all
vertices we have that the occurrences of every common label among the Km’s
incident to each vertex roughly agree in proportion with the occurrences of that
label in the decomposition. Since all but at most an η-proportion of the Km’s
in the decomposition have a common label, we obtain that the number ofKm’s
with common labels attached to each vertex v is at least (1− η)2N−1

m−1
, and the

number of Km’s with rare labels for v is at most 2η N−1
m−1

.

Next we shall also permute the vertices inside each Km so that the bound-
ary degrees in each Km will be equally distributed. For a vertex v and a
common label A we pick a random value in the boundary degree sequence
of each Km labelled with A and by applying Chernoff’s inequality we can
show that the sum of boundary degrees of v in all these Km’s is concentrated
around its expectation. By summing over all common labels, we have that
with positive probability there exists a permutation for which all vertices have
boundary degree at most (1+η)2 1

N
ξ
2
n2. By adding the largest possible bound-

ary degree, i.e., m for at most 2η N−1
m−1

Km’s with rare labels, we obtain that
each vertex of KN hosts at most

(1 + η)2
1

N

ξ

2
n2 + 2η

N − 1

m− 1
m <

(

(1 + η)2

1 + ξ/2

ξ

2
+ 2η(1 + ξ)

)

n < ξn

vertices from the boundary of F .

2.2 Packing the separators

Having constructed a packing of the components where each vertex of X hosts
at most ξn vertices from the boundary of F , it is left to show that we can use
just a few more vertices to embed the separators. In order to obtain a packing
of F we have to satisfy the following conditions:

(i) for every i ∈ [n], the vertices of Ui have to be mapped injectively into Y ;

(ii) each edge in KX,Y can be used at most once;

(iii) each edge in KY can be used at most once.

We embed the separators one by one, vertex by vertex. In the following we
describe the embedding of an arbitrary vertex u from an arbitrary separator Ui

We assume that all vertices of Uj with j < i and up to at most |Ui| ≤ δn
vertices of Ui were already embedded, and that so far we made sure that
every vertex in Y was used at most 3 δn2

|Y |
times. We will embed u in such a

way that the constraints discussed above will be obeyed, and afterwards each



vertex of Y is still used at most 3 δn2

|Y |
times. For that we collect the restrictions

given by the previous embeddings.

(i) Since the vertices of Ui have to be embedded injectively into Y , up to at
most |Ui| ≤ δn vertices in Y might be forbidden for the embedding of u.

(ii) Every edge in KX,Y can be used at most once, hence we have to embed u
into a vertex y such that all edges between y and the vertices X ′ of
X that embed the neighbours of u in Ci are available. Since u has at
most ∆ neighbours in Ci, and each vertex inX ′ hosts at most ξn boundary
vertices, each having at most ∆ neighbours in {Ui}i∈[n], at most ∆2ξn
more vertices might be forbidden.

(iii) Also the edges in KY can be used at most once. This means that the
target vertex for u must be chosen in such a way that all the edges to
the vertices Y ′ that embed its neighbourhood in Ui have not been used
yet. Note that each vertex in Y ′ may already host up to 3 δn2

|Y |
vertices

from {Ui}i∈[n], hence the embeddings of the neighbours of such vertices
are also forbidden for the choice of u. Since u has at most ∆ neighbours
in Ui, and each vertex embedded into Y ′ has at most ∆ neighbours in Y ,
this results in excluding at most ∆23 δn2

|Y |
additional vertices from Y .

An appropriate choice of the constants ensures that the set of candidates
for the embedding of u is larger than |Y |/2. Since we have to embed at
most

∑

i∈[n] |Ui| ≤ δn2 vertices in total, some vertex y ∈ Y was used at most

δn2

|Y |/2 < 3
δn2

|Y | − 1

times, and this vertex we choose for the embedding of u. We have thus shown
that for each vertex of {Ui}i∈[n] we can pick a vertex in Y such that all the
edges needed for the necessary connections are available, and hence obtain a
packing of F .
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