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Abstract

It is well known that for any k and g, there is a graph with chromatic number
at least k and girth at least g. In 1970’s, Erdős and Hajnal conjectured that for
any numbers k and g, there exists a number f(k, g), such that every graph with
chromatic number at least f(k, g) contains a subgraph with chromatic number at
least k and girth at least g. In 1978, Rödl proved the case for g = 4 and arbitrary
k. We prove the fractional chromatic number version of Rödl’s result.
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1 Outline

A well known result, proved by Erdős in 1950s, tells us that for every k and
g, there exists a graph with chromatic number at least k and girth at least g.
In 1970s, Erdős and Hajnal conjectured that for any k and g, there exists an
integer f(k, g), such that every graph with chromatic number at least f(k, g)
contains a subgraph with chromatic number at least k and girth at least g. In
1977, Rödl [2] proved the conjecture for g = 4 and arbitrary k. The special case
when g = 4 speaks about triangle-free subgraphs. This is the only nontrivial
case for which the Erdős and Hajnal conjecture has been confirmed.

Theorem 1.1 (Rödl (1977)) For every positive integer k, there exists an
integer f(k) such that if χ(G) ≥ f(k) then G contains a triangle-free subgraph
H with χ(H) = k.

Let I(G) be the family of all independent sets of G, and let I(G, v) be
the family of all those independent sets which contain the vertex v. For each
independent set I, consider a nonnegative real variable xI . The fractional
chromatic number of G, denoted by χf (G), is the minimum value of

∑
I∈I(G)

xI , subject to
∑

I∈I(G,v)

xI ≥ 1 for each v ∈ V (G).

Erdős actually proved the existence of a graph with large girth and large
fractional chromatic number, instead of chromatic number. This is a stronger
statement as the chromatic number is always greater or equal to the fractional
chromatic number. In this paper, we prove the fractional chromatic number
version of Rödl’s result.

Theorem 1.2 For every positive integer k, there exists an integer g(k) such
that every graph G with χf (G) ≥ g(k) contains a triangle-free subgraph H
with χf (H) ≥ k.

Given this result, we put forward the following.

Conjecture 1.3 For every positive integers k and l, there exists an integer
g(k, l) such that every graph G with χf (G) ≥ g(k, l) contains a subgraph H of
girth at least l and with χf (H) ≥ k.

As our final contribution, we show in Section 3 that the Erdős-Hajnal
Conjecture holds for Kneser graphs.



2 Proof of Theorem 1.2

The proof of Theorem 1.2 uses the tools presented in this section.

Given an arbitrary ordering v1, . . . , vn of the vertices of a graph G, let

NL(vi) = {vj : vjvi ∈ E(G), j < i},

that is, the set of the neighbors of vi that appear before vi. Rödl’s proof of
Theorem 1.1 is based on the following lemma.

Lemma 2.1 If χ(G) > kt, and χ(NL(v)) ≤ t for every v ∈ V (G), then there
exists a triangle-free subgraph H with χ(H) > k.

The original proof of Lemma 2.1 is elegant and very short, but it cannot
be applied to the fractional chromatic number. Our major effort is to extend
the above claim to the fractional chromatic number setup.

For a function w : V (G) → R, and a vertex set A, we write w(A) =∑
v∈A w(v). The fractional independence number, denoted by αf (G), is the

minimum over all non-negative weight functions w with w(V ) = n, of the
maximum value of w(I) over all independent sets I. Via LP duality we have
the fact that χf (G) = n

αf (G)
, where n = |V (G)|. So we can consider our

problem as a fractional independence number problem.

The following is our statement on the fractional independence number
analogous to Lemma 2.1. It uses the following function

f(k, l) =

(
(kl7)!

k!

)3

defined for all positive integers k and l. We also fix a weight function w :
V (G) → R+ on the vertices of G. In the proof of Theorem 1.2, the function
w is the one giving the fractional independence number of G.

Lemma 2.2 Suppose that w(I) ≤ w(V )
f(x,l)

for every I ∈ I(G), and that χf (N
L(v))

≤ l for every v ∈ V (G). Then G contains a triangle-free subgraph H, such

that w(I) ≤ w(V (H))
x

for every I ∈ I(H). In particular, χf (H) ≥ x.

Let v1, . . . , vn be the enumeration of the vertices in the non-decreasing
order according to the weight function w. Given a vertex set A, let Ak =
{v1, . . . , vk} be the first k elements in A according to the ordering v1, . . . , vn.
Let Ak be the k-th element of A. A subset B of A is called k-principal in A if
B ⊆ Ak|B|. A subset of A is called k-sparse in A if it contains no k-principal
subset of A.



Let A be a vertex set and v ∈ A, let LA(v) be the graph induced by the
neighbors of v in A that appear before v. The set A is reducible if it satisfies
the following conditions:

(i) w(A) ≥ w(V )
(x+1)3

and

(ii) χf (LA(v)) ≤ l(1− 1
6(x+1)

).

Lemma 2.3 For any reducible set A, there is a triangle-free subgraph H such
that any independent set of H has weight at most w(A)

x+1
.

Proof. (Sketch) Note that f(k, l) satisfies

f(k, l) ≥ (k + 1)3f(k + 1, l(1− 1
6(k+1)

))

and f(k, 1) = 1.

For any independent set I ⊆ A, we have

w(I) ≤ w(V )

f(x, l)
≤ w(A)

f(x,l)
(x+1)3

≤ w(A)

f(x+ 1, l(1− 1
6(x+1)

))
.

By using induction on l, there is a triangle-free subgraph such that any inde-
pendent set has weight at most w(A)

x+1
. �

Let R be the union of a maximal collection of disjoint reducible sets.
Then the complement R̄ = V \ R contains no reducible subsets. Applying
Lemma 2.3, we can find a triangle-free subgraph of R, such that for any inde-
pendent set I ⊂ R, we have w(I) ≤ w(R)

x+1
.

Let LG(v) denote the graph LV (G)(v). Assuming that χf (LG(v)) ≤ l, let
I(v) be the collection of independent set of LG(v). There exists a weight
function u : I(v) → [0, 1], such that any vertex in LG(v) is covered by inde-
pendents with total weight at least 1, and total weight of I(v) equals l. For a
set A containing v, we say v is type 1 in A if the total weight of independent
sets in I(v) that is totally out of A is at most l

6(x+1)
; otherwise v is type 2

in A. Let T1(A) be the collection of type 1 vertices of A and T2(A) be the
collection of type 2 vertices of A.

Given a vertex set A ⊆ R̄, we say A is dense if A is (x+ 1)-principal in R̄

and |T2(A)| ≤ |A|
x+1

.

Lemma 2.4 There is a triangle-free subgraph H, such that if A is dense, then
A is not stable in H.



Sketch of the proof: Let H be a subgraph of R̄, obtained randomly using
the following random choice. For each vertex v ∈ R, randomly pick an in-
dependent I from I(v) according to their weight u, and then add the edges
between I and v to H. Now, the lemma follows from the following claims that
are not too hard to prove.

Claim 1 H is a triangle-free subgraph of G.

Claim 2 The probability that every dense subset of R̄ contains an edge in H
is positive.

Lemma 2.5 If a set S ⊆ R̄ contains no dense subset, then w(S) ≤ w(R̄)
x+1

+
w(V )
(x+1)2

.

Claim 3 Every independent set I has weight at most w(V )
x

.

Proof. w(I) = w(I ∩ R) + w(I − R) ≤ w(R)
x+1

+ w(R̄)
x+1

+ w(V )
(x+1)2

= w(V )( 1
x+1

+
1

(x+1)2
) ≤ w(V )

x
. �

3 Blow-ups and Kneser graphs

This section contains the proof that the Erdős-Hajnal Conjecture holds for
Kneser graphs.

Given a graph H, the blow-up of H with power m, denoted by H(m), is
the graph obtained from H by replacing each vertex by an independent set of
size m (called the blow-up of the vertex), and for each edge xy in H, the two
blow-ups of x and y form a complete bipartite graph Km,m. The subgraph of
H(m) replacing an edge xy of H is isomorphic to Km,m and will be referred to
as the blow-up of that edge.

We have the following statement.

Theorem 3.1 Suppose G is a graph with Δ(G) ≤ Δ and χ(G) > x. Suppose
that m is an integer that is larger than x(xΔ)2g−4. Then there exists a subgraph
H of G(m) with girth more than g and chromatic number more than x.

There are several existing papers, for example [1] or [3], that gave a result
similar to Theorem 3.1, which are used to prove the existence of uniquely
colorable graphs. But the bound for the blow-up power m in those papers is
too large for our purpose as it depends on the number of vertices of G instead
of the maximum degree.

To prove Theorem 3.1, we use the following fact.



Claim 4 Given G with χ(G) > x, let H be a subgraph of G(m). Suppose that
for any edge ab ∈ E(G) and for any subsets X, Y contained in the blow-ups
of a and b, respectively, with |X| ≥ m

x
, |Y | ≥ m

x
, there is an edge between X

and Y in H. Then χ(H) > x.

Consider a random subgraph H of G(m), obtained in such a way that each
edge is picked with probability (m

x
)

1
4l
−1. Consider the event that the subgraph

has no short cycle, and for any edge ab ∈ E(G) and for any pairX, Y contained
in the respective blow-ups of a and b, and with |X| ≥ m

x
, |Y | ≥ m

x
, there is

an edge between X and Y in H. Applying the Asymmetric Form of the
Lovász Local Lemma to the two types of events together by carefully choosen
parameters, we are able to show that the event has positive probability.

From Theorem 3.1, we know that graphs that are blow-ups of smaller
graphs with sufficiently large power satisfy the Erdős-Hajnal Conjecture. In
particular, Kneser graphs are such examples. This is certified by the following
theorem (which is proved in the full version of the paper).

Theorem 3.2 Let n, k, t, and x be nonnegative integers such that 0 < k <
n and x < kt. The Kneser graph KG(nt, kt − x) contains the blow-up of
KG(n, k) with power

(
k(t−1)

x

)
as a subgraph. Furthermore, when x < t, it

contains the blow-up of KG(n, k) with power
(
kt
x

)
, and when x = t, it contains

the blow-up of KG(n, k) with power
(
kt
x

)− k.

The results listed above can be used to derive the main result of this
section.

Corollary 3.3 The Erdős-Hajnal Conjecture holds for Kneser graphs.
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