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Abstract

Kostochka and Yancey proved that every 5-critical graph G satisfies: |E(G)| ≥
9
4 |V (G)| − 5

4 . A construction of Ore gives an infinite family of graphs meeting this
bound.

We prove that there exists ε, δ > 0 such that if G is a 5-critical graph, then
|E(G)| ≥ (94 + ε)|V (G)|− 5

4 −δT (G) where T (G) is the maximum number of vertex-
disjoint cliques of size three or four where cliques of size four have twice the weight
of a clique of size three. As a corollary, a triangle-free 5-critical graph G satisfies:
|E(G)| ≥ (94 + ε)|V (G)| − 5

4 .
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1 Introduction

Intuitively, a graph that has fewer edges can be properly colored by a smaller
number of colors. Kostochka and Yancey [2] confirmed this intuition recently
by proving that every non-4-colorable graph has a subgraph with large edge
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density. We say that a graph is 5-critical if it is not 4-colorable, but all of its
proper subgraphs are.

Theorem 1.1 (Kostochka, Yancey [2]) If G is a 5-critical graph on n ver-
tices, then

|E(G)| ≥ 9n− 5

4
.

Furthermore, the bound in Theorem 1.1 is tight since it is attained by
infinitely many 5-critical graphs. In fact, in a subsequent paper [3], Kostochka
and Yancey characterized the 5-critical graphs that attain these bounds. First
a definition.

Definition 1.2 An Ore-composition of graphs G1 and G2 is a graph obtained
by the following procedure:

(i) delete an edge xy from G1;

(ii) split some vertex z of G2 into two vertices z1 and z2 of positive degree;

(iii) identify x with z1 and identify y with z2.

We say that G1 is the edge-side and G2 the split-side of the composition.
Furthermore, we say that xy is the replaced edge of G1 and that z is the split
vertex of G2. We say that G is a k-Ore graph if it can be obtained from copies
of Kk and repeated Ore-compositions.

Theorem 1.3 If G be a 5-critical, then |E(G)| = 9n−5
4

if and only if G is a
5-Ore graph.

More generally, answering a question of Gallai and Ore, Kostochka and
Yancey [2] showed that ifG is a k-critical graph, then |E(G)| ≥ (k

2
− 1

k−1)|V (G)|−
k(k−3)
2(k−1) , which is tight for k-Ore graphs. In a previous work [4], the author
showed that this can be improved for 4-critical graphs of girth five as follows:
There exists ε > 0 such that if G is a 4-critical graph of girth at least five,
then |E(G)| ≥ (5

3
+ ε)|V (G)| − 2

3
. It is natural then to wonder if a similar

results holds for larger k. Our main result answers this in the affirmative for
5-critical triangle-free graphs but first a definition.

Definition 1.4 If H is a disjoint union of cliques of size three or four, then
we let T (H) be the number of components in H that are cliques of size three
plus twice the number of components which are cliques of size four. More
generally, we let T (G) denote the maximum of T (H) over all such subgraph
H of G.

Here is our main result.



Theorem 1.5 There exists δ, ε, P > 0 such that the following holds. Let
p(G) = (9 + ε)|V (G)| − 4|E(G)| − δT (G). If G is a 5-critical graph, then

(i) p(G) = 5 + 5ε− 2δ if G = K5,

(ii) p(G) ≤ 5 + |V (G)|ε− (2 + (|V (G)|−1)
4

)δ if G is 5-Ore and G �= K5,

(iii) p(G) ≤ 5− P otherwise.

Corollary 1.6 There exists ε > 0 such that if G is a 5-critical triangle-free
graph, then |E(G)| ≥ (9

4
+ ε)|V (G)| − 5

4
.

Note that T (K5) = 2. Hence p(K5) = 5 + 5ε− 2δ.

2 Outline of Proof

To prove the second assertion of Theorem 1.5, we prove the following lemma:

Lemma 2.1 If G �= K5 is a 5-Ore graph, then T (G) ≥ 2 + |V (G)|−1
4

.

Note the following observation.

Lemma 2.2 If G is the Ore-composition of two graphs G1 and G2, then
T (G) ≥ T (G1)+T (G2)−2. Furthermore if G2 = K4, then T (G) ≥ T (G1)+1.

Proof. To prove the first statement, without loss of generality let e be the
replaced edge of G1 and z the split vertex of G2. It follows that T (G) ≥
T (G1−e)+T (G2 \z). But T (G1)−e ≥ T (G1)−1 and T (G2 \z) ≥ T (G2)−1.
Hence T (G) ≥ T (G1) + T (G2)− 2 as desired. To prove the second statement,
note that for every edge e ∈ E(K5), T (K5 − e) = 2 and for every vertex
z ∈ V (K5), T (K5 \z) = 2. Thus in either case, it follows from the calculations
above that T (G) ≥ T (G1)− 1 + 2 = T (G1) + 1. �

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. We proceed by induction on |V (G)|. Since G �= K5

and G is 5-Ore, G is the Ore-composition of two graphs G1 and G2. For each
i ∈ {1, 2}, if Gi �= K5, then by induction T (Gi) ≥ 2 + |V (Gi)|−1

4
.

First suppose that neither G1 nor G2 is isomorphic to K5. By Lemma 2.2,
T (G) ≥ T (G1) + T (G2) − 2. Using induction, we find that T (G) ≥ 2 +
|V (G1)|−1

4
+ 2 + |V (G2)|−1

4
− 2 = 2 + |V (G1)|+|V (G2)|−2

4
. Yet |V (G)| = |V (G1)| +

|V (G2)| − 1. So T (G) ≥ 2 + |V (G)|−1
4

as desired.

So we may assume without loss of generality that G2 = K5. Next suppose
G1 �= K5. By Lemma 2.2, T (G) ≥ T (G1) + 1. By induction, T (G1) ≥



2 + |V (G1)|−1
4

. So T (G) ≥ 3 + |V (G1)|−1
4

. Yet |V (G)| = |V (G1)|+ 4, so T (G) ≥
2 + |V (G)|−1

4
as desired.

Finally suppose both G1 and G2 are isomorphic to K5. Without loss of
generality, let e be the replaced edge of G1 and z the split vertex of G2.
Then T (G1 − e) = T (G2 \ z) = 2 as both contain a K4. Hence T (G) ≥
T (G1− e)+T (G2 \ z) = 2+2 = 4. Meanwhile, |V (G)| = 5+5− 1 = 9. Thus,
T (G) = 4 ≥ 2 + 9−1

4
as desired. �

2.1 Potential

The proof of the third assertion of Theorem 1.5 is quite long and techni-
cal. Thus we only provide an outline of the proof. The proof is modeled on
Kostochka and Yancey’s proof of Theorem 1.1. They defined a potential for
5-critical graphs, let us call it the Kostochka-Yancey potential of a graph G
, denoted pKY (G) as 9|V (G)| − 4|E(G)|. Theorem 1.1 then says that every
5-critical graph satisfies pKY (G) ≤ 5 while Theorem 1.3 says that equality
holds if and only if G is 5-Ore.

Definition 2.3 If R � V (G) with |R| ≥ 5, and φ is a 4-coloring of G[R],
we define the φ-identification of R in G, denoted by Gφ(R), to be the graph
obtained from G by identifying for each i ∈ {1, 2, 3, 4} the vertices colored i
in R to a vertex xi, adding the edges xixj for all i, j ∈ {1, 2, 3, 4} and then
deleting parallel edges.

Proposition 2.4 If G is 5-critical, R � V (G) with |R| ≥ 5, and φ is a
4-coloring of G[R], then χ(Gφ(R)) ≥ 5.

Since the resulting graph contains a 5-critical graph, we may extend the
set R to a larger set as follows:

Definition 2.5 Let G be a 5-critical graph, R � V (G) with |R| ≥ 5 and φ
a 4-coloring of G[R]. Now let W be a 5-critical subgraph of Gφ(R) and X
be the graph on the set of vertices xi (Note not all such vertices may exist).
Then we say that R′ = (V (W )−V (X))∪R is the critical extension of R with
extender W . We call W ∩X the core of the extension.

Note that every critical extension has a non-empty core as otherwise G
would contain a proper non-4-colorable subgraph contradicting that G is 5-
critical. Here is a key lemma bounding our potential for critical extensions in
terms of the original set and the extending critical graph. Note the use of the
vertex-disjointness of T (G).



Lemma 2.6 For small enough δ and ε the following holds: If G is a 5-critical
graph, R � V (G) with |R| ≥ 5 and R′ is a critical extension of R with extender
W and core X, then

pG(R
′) ≤ pG(R) + p(W )− f(|X|) + δ(T (W )− T (W \X)),

where f(|X|) = p(K|X|)− T (X).

Furthermore,

pG(R
′) ≤ pG(R) + p(W )− 9− ε+ δ.

2.2 Properties of a Minimum Counterexample

Let G be a minimum counterexample. Here are two key structural lemmas
that are proved about a minimum counterexample. Their proofs are intricate
and so are omitted. Furthermore, they require some machinery about the
potential of extensions and the characterizations of certain reductions which
are also omitted for brevity. Before we state these two lemmas, first we need
a definition.

Definition 2.7 We define D4(G) to be the subgraph of G induced by the
vertices of degree four. A graph is almost 5-Ore if it can be obtained from a
5-Ore graph by deleting a vertex in a cluster of size at least two.

Lemma 2.8 If uv is an edge of D4(G), then u is contained in a subgraph of
G not containing v that is almost 5-Ore. Furthermore, every component of
D4(G) has size at most 2.

Lemma 2.9 If v is a vertex of degree 5 in G, then v has at most one neighbor
of degree four that is incident with an edge of D4(G).

2.3 Discharging

We now outline the discharging proof of Theorem 1.5. Let G be a minimum
counterexample as in the previous section. We will need the following theorem
of Kierstead and Rabern [1]:

Definition 2.10 The maximum independent count of a graph G, denoted
mic(G), is the maximum of

∑
v∈I d(v) over all independent sets I of G.

Theorem 2.11 If G is a k-critical graph, then



|E(G)| ≥ k − 2

2
|V (G)|+ 1

2
mic(G).

We proceed by discharging. Let the charge of a vertex v, denoted ch(v) be
given by ch(v) = (9+ ε)−2d(v). We now discharge according to the following
rule to obtain a new charge, denoted chF (v).

Discharging Rule: If v is a vertex of degree at least 5 with a neighbor u
of degree four in a componenet of D4(G) of size at least two, then v receives
+1/3 charge from u.

Lemma 2.12 If v has degree at least 5, then chF (v) ≤ −2/3 + ε.

Proof. If v has degree 5, then ch(v) = −1+ ε. By Lemma 2.9, v sends charge
to at most one neighbor. Hence chF (v) ≥ −1 + ε+ 1/3 = ε− 2/3 as desired.

Suppose then that v has degree at least 6. Now, ch(v) = (9 + ε) − 2d(v)
and v receives at most +1/3 charge from each neighbor. Hence chF (v) ≤
(9 + ε)− 2d(v) + d(v)/3 = 9 + ε− 5

3
d(v). As d(v) ≥ 6, this is at most −1 + ε

as desired. �

However, if v has degree four and is in a component of size two of D4(G),
then chF (v) = ε. Meanwhile if v is degree four and in a component of size
1 of D4(G), then chF (v) = 1 + ε. Let S be the number of components of
size one in D4(G) and M be the number of components of size two in D4(G).
Hence the number of vertices of degree four is S + 2M and the number of
vertices of degree at least five is |V (G)| − S − 2M . Note that there is an
independent set consisting of vertices of degree four of size at least S + M .
Hence mic(G) ≥ 4(S +M).

Thus |E(G)| ≥ 3
2
|V (G)|+2(S+M). As p(G) > 0, (9+ε)|V (G)| > 4|E(G)|.

Hence (9+ε)|V (G)| > 6|V (G)|+8(S+M). Thus S+M < 3+ε
8
|V (G)|. On the

other hand,
∑

v ch(v) = (9+ε)|V (G)|−2
∑

v d(v) = (9+ε)|V (G)|−4|E(G)| ≥
p(G) > 0. Hence

∑
v chF (v) > 0. Yet,

∑
v chF (v) ≤ −2

3
(|V (G)| − S − 2M) +

S + ε|V (G)|. Thus, 5
3
S + 4

3
M > (2

3
− ε)|V (G)|.

So on the one hand, S + M > 3
5
(2
3
− ε)|V (G)| and, on the other hand,

S + M < 3+ε
8
|V (G)|. That is, 3+ε

8
|V (G)| > 2−3ε

5
|V (G)|. Hence, 15 + 5ε >

16− 24ε. That is, 29ε > 1. So ε > 1
29
, a contradiction.
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