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Abstract

For two graphs T and H with no isolated vertices and for an integer n, let
ex(n, T,H) denote the maximum possible number of copies of T in an H-free graph
on n vertices. The study of this function when T = K2 is a single edge is the
main subject of extremal graph theory. In the present paper we investigate the
general function, focusing on the cases of triangles, complete graphs, complete bi-
partite graphs and trees. These cases reveal several interesting phenomena. Three
representative results are:

(i) ex(n,K3, C5) ≤ (1 + o(1))
√
3
2 n3/2

(ii) For any fixedm, s ≥ 2m−2 and t ≥ (s−1)!+1, ex(n,Km,Ks,t) = Θ(nm−(m2 )/s)
(iii) For any two trees H and T one has ex(n, T,H) = Θ(nm) where m = m(T,H)

is an integer depending on H and T (its precise definition is given in the introduc-
tion).

The first result improves (slightly) an estimate of Bollobás and Győri. The proofs
combine combinatorial and probabilistic arguments with simple spectral techniques.
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1 Introduction

For two graphs T and H and for an integer n, let ex(n, T,H) denote the
maximum possible number of copies of T in an H-free graph on n vertices.

When T = K2 is a single edge, ex(n, T,H) is the well studied function,
usually denoted by ex(n,H), specifying the maximum possible number of
edges in an H-free graph on n vertices. There is a huge literature investigating
this function, starting with the theorems of Mantel [12] and Turán [16] that
determine it for H = Kr. See, for example, [14] for a survey.

In the present abstract we show that the function for other graphs T besides
K2 exhibits several additional interesting features. We illustrate these by
focusing on a few special cases such as the triangle T = K3 a general complete
graph T = Km or a tree, but the question is interesting for many other graphs
T , and many of the results can be extended to other graphs.

There are several sporadic papers dealing with the function ex(n, T,H) for
T 6= K2. The first one is due to Erdős in [6], where he determines ex(n,Kt, Kr)
for all t < r (see also [4] for an extension). A notable recent example is given
in [9], where the authors determine this function precisely for T = C5 and
H = K3. Another example is T = Kr and H = Kt where r < t, which follows
from the results in [4].

The case T = K3 and H = C2k+1 has also been studied. Bollobás and
Győri [5] proved that

(1 + o(1))
1

3
√
3
n3/2 ≤ ex(n,K3, C5) ≤ (1 + o(1))

5

4
n3/2. (1)

Győri and Li [8] proved that for any fixed k ≥ 2

(

k

2

)

exbip(
2n

k + 1
, C4, C6, . . . , C2k) ≤ ex(n,K3, C2k+1) ≤

(2k − 1)(16k − 2)

3
ex(n, C2k),

(2)
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Our first result characterizes all graphs H for which ex(n,K3, H) ≤ c(H)n.
The friendship graph Fk is the graph consisting of k triangles with a common
vertex. Call a graph an extended friendship graph iff its 2-core is either empty
or Fk for some positive k.

Theorem 1.1 There exists a constant c(H) so that ex(n,K3, H) ≤ c(H)n if
and only if H is a subgraph of an extended friendship graph.

We also slightly improve the upper estimates in (1) and in (2) above,
proving the following.

Proposition 1.2 The following upper bounds hold.

(i) ex(n,K3, C5) ≤ (1 + o(1))
√
3
2
n3/2.

(ii) For any k ≥ 2, ex(n,K3, C2k+1) ≤ 16(k−1)
3

ex(⌈n/2⌉, C2k).

A similar result has been proved independently by Füredi and Özkahya
[7], who showed that ex(n,K3, C2k+1) ≤ 9k ex(n, C2k).

The next theorem deals with maximizing the number of copies of a com-
plete graph while avoiding bipartite graphs:

Theorem 1.3 For any fixed m and t ≥ s satisfying s ≥ 2m − 2 and t ≥
(s− 1)! + 1 there are two constants c1 = c1(s, t) and c2 = c2(s, t) such that

c1n
m−(m2 )/s ≤ ex(n,Km, Ks,t) ≤ c2n

m−(m2 )/s.

The last two theorem focus on the case where H is a tree. Before we state
the results let us give the following definitions:

Definition 1.4 For a graph T , a set of vertices U ⊆ V (T ) and an integer
h, the (U, h) blow-up of T is the following graph. Fix the vertices in U , and
replace each connected component in T \U with h vertex disjoint copies of it
connected to the vertices of U exactly as the original component is connected
to these in T .

Definition 1.5 For two trees, T and H , let m(T,H) be the maximum integer
m such that there is a (U, |V (H)|) blow-up of T containing no copy of H and
having m connected components in T \ U .

In this notation we prove the following.



Theorem 1.6 Let H and T be trees and m = m(T,H). Then there are two
positive constants c1(t, h), c2(t, h) so that

c1(t, h)n
m ≤ ex(n, T,H) ≤ c2(t, h)n

m

Finally we consider the case where T is a bipartite graph and H is a tree.
For a tree H , any H-free graph can have at most a linear number of edges.
Therefore, by a theorem proved in [1], the maximum possible number of copies
of any bipartite graph T in it is bounded by O(nα(T )), where α(T ) is the size
of a maximum independent set in T . Using the next definition we characterize
the cases in which ex(n, T,H) = Θ(nα(T )).

Definition 1.7 An edge cover of a graph T is a set Γ ⊂ E(T ) such that
for each vertex v ∈ V (T ) there is an edge e ∈ Γ for which v ∈ e. Call an
edge-cover minimum if it has the smallest possible number of edges.

A set of vertices U ⊂ V (T ) is called a U(Γ)-set if each connected com-
ponent of T \ U intersects exactly one edge of Γ, and the number of these
connected components is |Γ|.
Theorem 1.8 Let T be a bipartite graph and let H be a tree. Then the fol-
lowing are equivalent:

(i) ex(n, T,H) = Θ(nα(T ))

(ii) For any minimum edge-cover Γ of T there is a choice of a U(Γ)-set U
such that the (U, h) blow-up of T does not contain a copy of H,

(iii) For some minimum edge cover Γ of T there is a choice of a U(Γ)-set U
such that the (U, h) blow-up of T does not contain a copy of H.

2 Some Proof Sketches

2.1 Proof of Theorem 1.1

For the proof of Theorem 1.1 we use the following two lemmas:

Lemma 2.1 Let G = (V,E) be a graph with at least (9c−15)(c+1)n triangles
and at most n vertices, then it contains a copy of Fc.

Lemma 2.2 For every k > 3 and n large enough there is a graph G on n

vertices with at least Ω(n1+ 1
k−1 ) triangles and no cycles of length i for any i

between 4 and k.

We can now prove Theorem 1.1.



Proof. (Sketch) We need to show first that ex(n,K3, H) is linear in n for
any extended friendship graph and second that if H is not a subgraph of an
extended friendship graph then there is a graph G with n vertices and ω(n)
triangles containing no copy of H .

The first part can be achieved by showing that a graph with at least 10h2 ·n
triangles has a subgraph with many triangles and a high minimal degree. By
Lemma 2.1 this graph will contains a copy of the 2-core of H and the high
minimal degree allows us to embed all of H .

For the second part we note that H is not a subgraph of an extended
friendship graph iff it either contains a cycle of length greater than 3 or it
contains two vertex disjoint triangles. Lemma 2.2 provides a graph G with a
superlinear number of triangles and no no copy of Ck for k ≥ 4. The complete
3-partite graph K1,⌊n−1

2
⌋,⌈n−1

2
⌉ has a non-linear number of triangles and non of

them are disjoint. 2

2.2 Proof of Theorem 1.3

We prove the upper and lower bound in the following two lemmas. From here
on, denote by N (G,H) the number of copies of H in G.

Lemma 2.3 For any fixed m ≥ 2 and t ≥ s ≥ m− 1

ex(n,Km, Ks,t) ≤ (
1

m!
+ o(1))(t− 1)

m(m−1)
2s nm−m(m−1)

2s

Proof. (Sketch) We apply induction on m. For m = 2 the Kövari, Sós Turán

result [11] gives ex(n,K2, Ks,t) = ex(n,Ks,t) ≤ (1
2
+o(1))(t−1)

1
sn2− 1

s and this
will serve as our base case.

For the induction step assume we have proved this for m and let us prove
it for m + 1. Let G = (V,E) be a Ks,t free graph on n vertices, and let us
bound the number of copies of Km+1 in it. For each v ∈ V we know that
its neighborhood N(v) does not contain any copy of Ks−1,t. By the induction
assumption we can bound the number of copies of Km in N(v):

N (N(v), Km) ≤ ex(dv, Km, Ks−1,t) ≤ (
1

m!
+ o(1))(t− 1)

m(m−1)
2(s−1) d

m−m(m−1)
2(s−1)

v

From this and by using the means inequality and the fact that the number
of s-edged stars in G cannot exceed

(

n
s

)

(t − 1) we can get a bound on the
number of copies of Km in G:



N (G,Km+1) ≤ (
1

(m+ 1)!
+ o(1))(t− 1)

(m+1)m
2s n(m+1)− (m+1)m

2s

2

Lemma 2.4 For any fixed m, s ≥ 2m− 2 and t ≥ (s− 1)! + 1

ex(n,Km, Ks,t) ≥ (
1

m!
+ o(1))nm−m(m−1)

2s

Proof. (Sketch)

We use the projective norm-graphs H(q, s) as constructed in [3], in the
same paper it is shown that H(q, s) is Ks,(s−1)!+1 free. To determine the
number of copies of Km in this graph we use a result on (n, d, λ) graphs. An
(n, d, λ) graph is a d-regular graph on n vertices in which all eigenvalues but
the first have absolute value at most λ.

A result of the first author (see [10], Theorem 4.10) is the following: Let
G1 be a fixed graph with r edges, s vertices and maximum degree ∆. Let G2

be an (n, d, λ) graph. If n ≫ λ(n
d
)∆ then the number of copies of G1 in G2

is (1 + o(1)) ns

|Aut(G1)|(
d
n
)r. In our case we take G1 = Km and G2 = H(q, s).

By the results in [15] or [2] we know that the second eigenvalue, in absolute

value, of H(q, s) is q
s−1
2 and from the construction |V (H)| = qs − qs−1, thus:

N (H(q, s), Km) = ( 1
m!

+ o(1))nm−m(m−1)
2s

2
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[2] N. Alon and V. Rödl, Sharp bounds for some multicolor Ramsey numbers,
Combinatorica 25 (2005), 125-141.
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