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Abstract

We present a ‘Regular Slice Lemma’ which, given a k-graph G, returns a regular
(k − 1)-complex J with respect to which G has useful regularity properties. We
believe that many arguments in extremal hypergraph theory are made considerably
simpler by using this lemma rather than existing forms of the Strong Hypergraph
Regularity Lemma, and advocate its use for this reason.

Keywords: Hypergraphs, Regularity Lemma.

1 Email: p.d.allen@lse.ac.uk, j.boettcher@lse.ac.uk, cooley@math.tugraz.at,

r.mycroft@bham.ac.uk
2 PA was partially supported by FAPESP (Proc. 2010/09555-7); JB by FAPESP
(Proc. 2009/17831-7); PA and JB by CNPq (Proc. 484154/2010-9); OC by the DFG
(TA 309/2-2); The cooperation of the authors was supported by a joint CAPES-DAAD
project (415/ppp-probral/po/D08/11629, Proj. no. 333/09). The authors are grateful to
NUMEC/USP, Núcleo de Modelagem Estocástica e Complexidade of the University of São
Paulo, and Project MaCLinC/USP, for supporting this research.

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Introduction

The Szemerédi Regularity Lemma [10] is a powerful tool in extremal graph
theory; a great number of advances in this area over recent decades either
rely on, or at least were inspired by, the Regularity Lemma. Finding the right
extension of this result for uniform hypergraphs turned out to be a challenging
endeavour, which culminated in the proof of the Strong Hypergraph Regularity
Lemma together with a corresponding Counting Lemma (see [4,6,7,8,9]), which
provide an analogous machinery for extremal problems in hypergraphs. The
difficulty with these tools is their technical intricacy, which leads to significant
additional complexity in applications of the regularity method in extremal
hypergraph theory.

We argue that in many cases much of this complexity can be avoided by
using a structure which we call a regular slice instead of the more complicated
structure returned by the Strong Hypergraph Regularity Lemma. Our main
result is a Regular Slice Lemma, derived from the Strong Hypergraph Regular-
ity Lemma, which asserts the existence of regular slices which inherit enough
structure from the original hypergraph to be useful for embedding problems.

2 Regular Complexes

In this section we give key definitions, including the notion of a regular k-
complex (this idea plays a key role in describing regularity for hypergraphs).
For a more expository introduction to regular k-complexes we recommend [4].

A hypergraph H = (V,E) consists of a vertex set V and an edge set E,
where each edge e ∈ E is a subset of V . We often identify a hypergraph with
its edge set, writing e ∈ H to mean e ∈ E and writing |H| for the number of
edges of H. Similarly, given two hypergraphs G and H with vertex set V , we
write G ∪ H for the hypergraph on V with edge set E(G) ∪ E(H).

We say that a hypergraph H is k-uniform if every edge has size k, and
abbreviate ‘k-uniform hypergraph’ to k-graph. Also, we say that H is a k-
complex if every edge of H has size at most k, and moreover for any e ∈ H
and e′ ⊆ e we have e′ ∈ H. We informally think of a k-complex H as having
‘layers’, where ‘layer’ i is the i-graph formed by edges of H of size i. Given a
(k−1)-complexH with vertex set V , we say that a k-set S ⊆ V is supported on
H if S ′ ∈ H for any S ′ � S, and similarly that a k-graph G on V is supported
on H if every edge of G is supported on H. So, informally, in a k-complex H
the ith layer is supported on the (i − 1)-complex formed by the edges of all
lower layers. Finally, given a vertex set V and a partition P of V , we say that



a set S ⊆ V is P-partite if S contains at most one vertex from any part of P ,
and we say that a hypergraph H with vertex set V is P-partite if every edge
of H is P-partite.

For the rest of this section we fix a vertex set V and a partition P of V
into parts V1, . . . , Vt, which we call clusters. Let H be a k-complex on V . For
any � ≥ 2 and any A ∈ (

[t]
�

)
, we define VA :=

⋃
i∈A Vi, and write PA for the

partition of VA inherited from P (so PA has |A| = � parts). Similarly, we
write HA for the PA-partite �-graph with vertex set VA and whose edges are
precisely the edges of H which have � vertices, one in each part of PA. We
also denote by H∗

A the PA-partite �-graph with vertex set VA whose edges are
precisely those PA-partite sets S ∈

(
VA

�

)
such that every proper subset S ′ � S

is an edge of H. We then define the relative density of H at A to be

dA(H) :=
|HA ∩H∗

A|
|H∗

A|

if |H∗
A| > 0, so dA(H) is the proportion of PA-partite sets S ∈

(
VA

�

)
which could

possibly be edges of H (in the sense that S is supported on the ‘lower levels’
of H) which are in fact edges of H. If instead |H∗

A| = 0 then for convenience
we define dA(H) := 0. In the same way, if Q := (J1,J2, . . . ,Jr) is a collection
of r not-necessarily-disjoint subcomplexes of H, we define

dA(H|Q) :=
|HA ∩

⋃
i∈[r](Ji)

∗
A|

|⋃i∈[r](Ji)∗A|

if |⋃i∈[r](Ji)
∗
A| > 0, and take dA(H|Q) := 0 otherwise. We say that H is

(di, ε, r)-regular at A if we have dA(H|Q) = di±ε for every r-set Q of subcom-
plexes of H such that |⋃i∈[r](Ji)

∗
A| > ε|H∗

A|. We refer to (di, ε, 1)-regularity

simply as (di, ε)-regularity. Moreover, for constants d2, . . . , dk we say that H
is (dk, . . . , d2, εk, ε, r)-regular if

(a ) H is (di, ε)-regular at A for any 2 ≤ i ≤ k − 1 and any A ∈ (
[s]
i

)
, and

(b ) H is (dk, εk, r)-regular at A for any A ∈ (
[s]
k

)
.

This definition of a regular k-complex provides the best generalisation of
the notion of regularity in graphs to the hypergraph setting. Indeed, for regu-
lar k-complexes we have a Counting Lemma (see [4,6,7,8,9]), which gives the
approximate number of copies of any small fixed k-complex within a regu-
lar k-complex, as well as an Extension Lemma [3], an Embedding Lemma [3]
and (under some additional conditions) a Blow-up Lemma [5], each of which
functions similarly as in the graph case.



3 Regular Slices for Hypergraphs

To make use of the definitions of the previous section in solving embedding
problems in k-graphs, we need a form of ‘hypergraph regularity lemma’. In-
formally this should, given a k-graph G, return one or more (k− 1)-complexes
J on V (G) such that adding edges of G as the ‘kth layer’ of J results in a
regular k-complex.

To formalise this idea, we make the following further definitions (main-
taining the notation of the previous section). Suppose that J is a P-partite
(k − 1)-complex on V , and that G is a k-graph on V . Then the restriction
of G to J , denoted G[J ], is the subgraph of G consisting of all edges of G
which are supported on J . It follows that J ∪ G[J ] is a k-complex on V .
Moreover, for any k-set X of clusters of P , we say that G is (εk, r)-regular
with respect to X if the restriction of J ∪ G[J ] to the clusters of X forms a
(d, dk−1, . . . , d2, εk, ε, r)-regular k-complex for some d; we refer to this value of
d as the relative density of G with respect to J at X, denoted by d∗(X) if G
and J are clear from the context.

Ideally a hypergraph regularity lemma would, given a k-graph G, return a
(k−1)-complex J on V (G) such that most of G is supported on J and J ∪G[J ]
is a regular k-complex; sadly, this is not possible. Instead, existing forms of
the hypergraph regularity lemma say that (very roughly speaking) given a k-
graph G with vertex set V , we can find the following. First, a partition P of V
into a bounded number of parts of equal size, called clusters. Second, for each
2 ≤ � ≤ k − 1 a partition of the P-partite �-sets of vertices into a bounded
number of parts, called cells, with the property that for any P-partite k-set
S of vertices of V , the hypergraph J whose edge set is the union of all cells
containing subsets of S is a regular (k− 1)-complex. Moreover, for almost all
choices of S, the k-complex J ∪G[J ] should be regular (so in particular, all but
a few edges of G lie in the ‘kth layer’ of a regular k-complex whose ‘lower layers’
are unions of cells). The partitions into cells are often collectively referred
to as a partition k-complex ; much of the technical complexity involved in
applications of the Strong Hypergraph Regularity Lemma arises when working
with this structure.

Our Regular Slice Lemma is quite different. Indeed, given a k-graph G it
returns a single (k−1)-complex J for which J ∪G[J ] has desirable regularity
properties, as in the following definition.

Definition 3.1 Given ε, εk > 0, r, t0, t1 ∈ N and a k-graph G with vertex set
V , a (t0, t1, ε, εk, r)-regular slice for G is a (k − 1)-complex J on V such that



(a ) J is P-partite for some partition P of V into t parts of equal size, where
t0 ≤ t ≤ t1. We call P the ground partition of J , and call the parts of
P the clusters of J .

(b ) There exists a density vector d = (dk−1, . . . , d2) such that for each 2 ≤
i ≤ k− 1 we have di ≥ 1/t1 and 1/di ∈ N, and J is (dk−1, . . . , d2, ε, ε, 1)-
regular.

(c ) G is (εk, r)-regular with respect to all but at most εk
(
t
k

)
of the k-sets of

clusters of J .

Having obtained a regular slice J for a k-graph G, we define a weighted
reduced k-graph according to the relative density d∗(X) of G with respect to
J at each k-set X of clusters of J .

Definition 3.2 [Weighted reduced k-graph] Given a k-graph G and a (t0, t1, ε, εk, r)-
regular slice J for G, the reduced k-graph RJ (G) of G and J is the complete
weighted k-graph whose vertices are the clusters of J , and where each edge X
is given weight d∗(X) (in particular, the weight is in [0, 1]). When J is clear
from the context we simply write R(G) instead of RJ (G).

In general, it is not very helpful to know that J is a regular slice for a k-
graph G. Indeed, G[J ] will usually contain only a tiny fraction of the edges of
G, which need not be representative, so the reduced k-graph of G with respect
to J does not necessarily resemble G in the way that the reduced 2-graph of a
2-graph H with respect to a Szemerédi partition resembles H. However, our
Regular Slice Lemma states that there exists a regular slice J for which R(G)
does resemble G, in the sense that densities of small subgraphs (part (a ) of
the Regular Slice Lemma) and degree conditions (part (b )) are preserved. In
order to make this precise, we make the following further definitions.

Fix a weighted k-graph G, whose weight function we denote by d∗. Given
a set S ⊆ V (G) of size j for some 1 ≤ j ≤ k − 1, the relative degree deg(S;G)
of S is defined to be

deg(S;G) :=
∑

e∈G:S⊆e d
∗(e)

(|V (G)\S|
k−j

) .

So if every edge of G has weight one, then deg(S;G) is simply the proportion
of k-sets of vertices of G containing S which are in fact edges of G. Likewise,
for any k-graph H, we define the H-density of G as

dH(G) :=
∑

φ:V (H)→V (G)
∏

e∈E(H) d
∗(φ(e)

)

(
v(G)
v(H)

) · v(H)!
,



where φ ranges over all injective maps from V (H) to V (G) and d∗ is the weight
function on E(G). So if every edge of G has weight one, then the numerator is
simply the number of labelled copies of H in G, justifying the use of the term
H-density.

We can now give the statement of the Regular Slice Lemma.

Lemma 3.3 (Regular Slice Lemma) Let k ≥ 3 be a fixed integer. For any
t0 ∈ N and εk > 0 and any functions r : N → N and ε : N → (0, 1], there
are integers t1 and n0 such that the following holds for all n ≥ n0 which are
divisible by t1!. Let G be a k-graph on n vertices; then there exists a (k − 1)-
complex J on V (G) which is a (t0, t1, ε(t1), εk, r(t1))-regular slice for G with
the following additional properties.

(a ) For any k-graph H with v(H) ≤ 1/εk we have

|dH (R(G))− dH (G)| < εk .

(b ) For any 1 ≤ j ≤ k − 1 and any set Y of j clusters of J we have

∣
∣deg(Y ;R(G))− deg(JY ;G)

∣
∣ < εk .

In fact, the version of the Regular Slice Lemma stated in [1] is stronger
in several useful ways. First, given several k-graphs G1, . . . ,Gs on the same
vertex set, it allows us to find a single J which is simultaneously a regular slice
for each Gi. Second, given an initial partition Q of V (G) into parts of equal
size, it allows us to insist that the ground partition P of J is a refinement
of Q. Third, we may insist that the reduced graph inherits degrees and H-
densities within linear-size subsets of V (G), rather than simply within all of
V (G). Finally, we can also insist that for any S ⊆ V (G) of size at most
k − 1, the neighbourhood of S in G[J ] is an accurate representation of the
neighbourhood of S in G (this final point is particularly useful for embedding
spanning subgraphs). However, the form stated above is sufficient for the
principal application given in [1], namely to prove a hypergraph analogue of
the Erdős-Gallai theorem (see also [2]).

4 Advantages of the Regular Slice Lemma

We believe that many applications of hypergraph regularity can be simplified
considerably by using the Regular Slice Lemma, for a number of reasons.
Firstly, use of the Regular Slice Lemma avoids the need to introduce and work
with the notion of a ‘partition complex’ or related structure; this in itself yields



significant reductions in length and notational complexity. Furthermore, the
reduced k-graph as defined in Definition 3.2 is the correct indexing structure
for a regular slice, and this fact allows arguments which are much closer in style
to arguments using regularity in graphs. By contrast, Keevash [5] observed
that the correct indexing structure for a partition complex arising from the
Strong Hypergraph Regularity Lemma is a so-called ‘multicomplex’, a more
technical structure which is less straightforward to handle.

Due to this, various attempts have been made to define and work with a
reduced k-graph following an application of the Strong Hypergraph Regularity
Lemma; typically these have a vertex corresponding to each cluster, with k
clusters forming an edge if G is both regular and dense with respect to some
(k − 1)-complex formed by cells on these clusters. The drawback of this
approach is that edges may intersect in the reduced k-graph without any
corresponding intersection in the corresponding complexes. That is, taking
k = 3 for simplicity, even if both V1V2V3 and V2V3V4 are edges of the reduced
3-graph, there need be no pair {v2, v3} with v2 ∈ V2 and v3 ∈ V3 which is an
edge of both the 2-complexes indicated by this fact.

By contrast, if G is a k-graph, and J is a regular slice for G, then sub-
complexes of J corresponding to intersecting edges of the reduced k-graph
R(G) always do share edges in the common clusters. More specifically, again
taking k = 3, let V1, V2, V3 and V4 be clusters of J for which V1V2V3 and
V2V3V4 are both edges of the reduced 3-graph R(G) which correspond to reg-
ular complexes of high density. Then most edges {v2, v3} ∈ J with v2 ∈ V2

and v3 ∈ V3 are contained in many edges of G[V1, V2, V3] and also in many
edges of G[V2, V3, V4]. Using this fact we can, for example, easily embed a long
tight path in G including vertices from both V1 and V4 (where a tight path
is a sequence of distinct vertices so that any three consecutive vertices form
an edge of G). Indeed, we embed a tight path in G[V1, V2, V3] using the fact
that G is regular and dense with respect to these clusters, ending at some pair
{v2, v3} ∈ J with v2 in V2 and v3 ∈ V3. Following this we similarly embed
a tight path in G[V2, V3, V4] beginning with the same pair {v2, v3}; these two
paths consequently form a single tight path as required. Proceeding in this
manner across linearly many edges of R(G) is the essence of the proof of the
Cycle Embedding Lemma proved in [1], which was a key ingredient in the
hypergraph analogue of the Erdős-Gallai theorem proved in the same paper
(also see [2]). As described above, it is much less straightforward to proceed
in this manner following an application of the Strong Hypergraph Regularity
Lemma.
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[1] P. Allen, J. Böttcher, O. Cooley, and R. Mycroft, Tight cycles and regular slices
in dense hypergraphs, arXiv:1411.4957.

[2] , Tight cycles in hypergraphs, Extended abstract submitted to Eurocomb
2015.
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[7] V. Rödl and M. Schacht, Regular partitions of hypergraphs: counting lemmas,
Combin. Probab. Comput. 16 (2007), no. 6, 887–901.

[8] , Regular partitions of hypergraphs: regularity lemmas, Combin. Probab.
Comput. 16 (2007), no. 6, 833–885.
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