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ir
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hromati
 number of the plane.Konstanty Junosza-Szaniawski 1Fa
ulty of Mathemati
s and Information S
ien
eWarsaw University of Te
hnologyWarsaw, PolandAbstra
tIn this paper we 
onsider a 
ir
ular version of the Nelson-Hadwiger problem. Namely,we show a 
ir
ular (4 + 4
√

3

3
)-
oloring of the unit distan
e graph, whi
h is a graphwith the set of all points of the plane as the vertex set and any two points adja
entif their eu
lidean distan
e is equal to one.Keywords: Nelson-Hadwiger problem, 
ir
ular 
oloring, 
oloring of the planeWe refer to the famous Nelson-Hadwiger problem and a well studied 
ol-oring model, whi
h is 
ir
ular 
oloring. The Nelson-Hadwiger problem is thequestion for the 
hromati
 number of the plane, whi
h is the minimum numberof 
olors required to 
olor every point of the plane in su
h a way that no twopoints at distan
e 1 from ea
h other have the same 
olor. The exa
t answer tothe question is not known. We only know that at least 4 
olors are needed [5℄and 7 
olors su�
e [3℄. For a 
omprehensive history of the Hadwiger-Nelsonproblem see the monograph by Soifer [7℄.An r-
ir
ular 
oloring of a graph G = (V,E) is a fun
tion c : V → [0, r)su
h that for any edge uv of G holds 1 ≤ |c(u)− c(v)| ≤ r − 1. Noti
e that
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an r-
ir
ular 
oloring 
an be seen as an assignment of ar
s of length 1 of the
ir
le with perimeter r to verti
es of G in su
h a way that adja
ent verti
esget disjoint ar
s. The 
ir
ular 
hromati
 number of a graph G is the number
χc(G) = inf{r ∈ R : there exists r-
ir
ular 
oloring of G}. Cir
ular 
oloringwas �rst introdu
ed by Vin
e [8℄. For a survey see Zhu [9℄. It is known [8℄that the 
ir
ular 
hromati
 number does not ex
eed the 
hromati
 number,but is bigger than the 
hromati
 number minus one (χc(G) ∈ (χ(G)−1, χ(G)]for any graph G).By r-
ir
ular 
oloring of the plane we mean a fun
tion c : R2 → [0, r)su
h that for any two points u, v whi
h are at distan
e 1 holds: 1 ≤ |c(u) −(�v)| ≤ r − 1. By the 
ir
ular 
hromati
 number of the plane we mean
χc(R

2) = inf{r ∈ R : there exists r-
ir
ular 
oloring of the plane}. If we
ombine known bounds for the 
hromati
 number of the plane with propertiesof the 
ir
ular 
hromati
 number, we obtain 3 < χc(R
2) ≤ 7. The lower bound
an be improved by 
omparing with another interesting parameter, i.e. thefra
tional 
hromati
 number. To de�ne it we �rst need to de�ne the so-
alled

j-fold 
oloring of the plane. A fun
tion is a j-fold 
oloring if it assigns a j-element set of natural numbers to every point of the plane in su
h a way thatpoints in distan
e 1 get disjoint sets. The fra
tional 
hromati
 number of theplane χf(R
2) is de�ned by

χf(R
2) = inf{k

j
: there exists j − fold 
oloring of the plane using k 
olors.}It is known [9℄ that χf (R

2) ≤ χc(R
2). The best known lower bound for

χf(R
2) is 32

9
= 3.555.. and it 
an be found in the book by S
heinerman andUllman [6℄. This gives us a lower bound on the 
ir
ular 
hromati
 number ofthe plane. DeVos et al. [1℄ improved this bound by showing that the 
hromati
number of the plane is at least 4. In this paper we give the �rst non-trivialupper bound on the 
ir
ular 
hromati
 number of the plane:Theorem 0.1

χc(R
2) ≤ 4 +

4
√
3

3
≤ 6.3095To present a (4+ 4

√

3

3
)-
ir
ular 
oloring of the plane we need few de�nitions.For x ∈ R and ℓ ∈ R+ we de�ne ⌊x⌋ℓ = ⌊x

ℓ
⌋·ℓ and (x)ℓ = x−⌊x⌋ℓ. Noti
e thatfor ℓ = 1, the fun
tion ⌊x⌋ℓ is the standard �oor fun
tion ⌊x⌋. Let ℓ = 2+2

√
3and let r = 2

√

3

3
ℓ = 4 + 4

√

3

3
.Let us start with some intuition on the 
onstru
tion of an r-
ir
ular 
ol-



oring of the plane. Let R denote the re
tangle [0, ℓ) × [0, 1
2
). We de�ne an

r-
ir
ular 
oloring of the re
tangle R by c(x, y) = 2
√

3

3
x, (where (x, y) ∈ R).Then we extend this 
oloring in a 
ir
ular way on a strip S = R× [0, 1

2
). Wesimply join 
opies of the re
tangle R by their verti
al sides so they form thestrip S. Ea
h 
opy of R is 
olored in the same way as the original re
tangle

R. Then we take 
opies of the strip S and join them with horizontal sides.Ea
h strip S is 
olored in the same way as the original one, but we shift ea
h
opy of S by (1 +
√

3

2
) to the right, 
omparing to the strip below (see Figure1)

Fig. 1. Partitions of the plane into 
opies of the re
tangle RFormally, the r-
ir
ular 
olouring of the plane is de�ned by:
c(x, y) =

2
√
3

3

(

x− (2 +
√
3)⌊y⌋ 1

2

)

ℓ
.For visualization of the 
oloring see the Figure 2.Exoo 
onsidered more restri
ted 
oloring of the plane in [2℄. He askedfor the minimum number of 
olors needed to 
olor the plane in su
h a waythat any two points in at distan
e belonging to a given interval [1 − ǫ, 1 + ǫ]get di�erent 
olors. For ǫ = 0 the problem redu
es to the Nelson-Hadwigerproblem. The fra
tional and j-fold Exoo-type 
oloring was studied in [4℄. Themethod of 
ir
ular 
oloring of the plane presented in this paper 
an be adaptedto Exoo-type 
oloring of the plane.
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Fig. 2. The
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