Large unavoidable subtournaments

Eoin Long

School of Mathematical Sciences
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, 6997801, Israel.

Abstract
Let D_k denote the tournament on $3k$ vertices consisting of three disjoint vertex classes V_1, V_2 and V_3 of size k, each of which is oriented as a transitive subtournament, and with edges directed from V_1 to V_2, from V_2 to V_3 and from V_3 to V_1. Fox and Sudakov proved that given a natural number k and $\epsilon > 0$ there is $n_0(k, \epsilon)$ such that every tournament of order $n \geq n_0(k, \epsilon)$ which is ϵ-far from being transitive contains D_k as a subtournament. Their proof showed that $n_0(k, \epsilon) \leq \epsilon^{-O(k/\epsilon^2)}$ and they conjectured that this could be reduced to $n_0(k, \epsilon) \leq \epsilon^{-O(k)}$. Here we outline a proof of this conjecture.

Keywords: Tournament, Ramsey Theory, Extremal Graph Theory.

1 Introduction

A central result in the Ramsey theory is Ramsey’s theorem [10], which says that given any natural number k, there is an integer N such that every two colouring of the edges of the complete graph K_N contains a monochromatic copy of K_k. An important problem in the area is to estimate the smallest
value of N for which the theorem holds, denoted $R(k)$. It is known that $2^{(1/2+o(1))k} \leq R(k) \leq 4^{(1+o(1))k}$ (see [3], [11], [5], [1]).

For general two colourings of K_N one clearly cannot guarantee any coloured subgraph other than a monochromatic clique in Ramsey’s theorem. Bollobás raised the question of which coloured subgraphs occur in two colourings of K_N where each colour appears on at least ϵ proportion of the edges. Let \mathcal{F}_k denote the collection of two coloured graphs of order $2k$, in which one colour appears as either a clique of order k or two disjoint cliques of order k. Bollobás asked whether, given a natural k and $\epsilon > 0$ there is $M = M(k, \epsilon)$ with the following property: in every two colouring of the edges of K_M containing both colours on at least ϵ proportion of the edges, some element of \mathcal{F}_k appears as a coloured subgraph. Cutler and Montágh [2] answered this question in the affirmative and proved that it is possible to take $M(k, \epsilon) \leq 4^{k/\epsilon}$. Fox and Sudakov [6] subsequently improved this bound to show that $M(k, \epsilon) \leq e^{-ck}$, for some constant $c > 0$. As shown in [6], this bound is tight up to the value of the constant c in the exponent, which can be seen by taking a random two colouring of a graph on $\epsilon^{-k-1/2}$ vertices with appropriate densities.

Here we will be concerned with an analogous question for tournaments. A tournament is a directed graph obtained by assigning a direction to the edges of a complete graph. A tournament is said to be transitive if it is possible to order the vertices of the tournament so that all of its edges point in the same direction. Let $T(k)$ denote the smallest integer such that every tournament on $T(k)$ vertices contains a transitive subtournament on k vertices. A classic result due to Erdős and Moser [4] shows that $2^{(k-1)/2} \leq T(k) \leq 2^k - 1$.

As in the two colouring graph case, it is natural ask which subtournaments must occur in large tournament which is ‘not too similar’ to a transitive tournament. An n-vertex tournament T is ϵ-far from being transitive if in any ordering of the vertices of T, the direction of at least en^2 edges of T must be switched in order to obtain a transitive tournament. In [6], Fox and Sudakov asked the following question: given $\epsilon > 0$, which subtournaments must an n-vertex tournament which is ϵ-far from being transitive contain?

For any natural number k, let D_k denote the tournament on $3k$ vertices consisting of three disjoint vertex classes V_1, V_2 and V_3 of size k, each of which is oriented as a transitive subtournament, and with all edges directed from V_1 to V_2, from V_2 to V_3 and from V_3 to V_1. Taking $T = D_{n/3}$ we obtain an n-vertex tournament which is $\frac{1}{9}$-far from being transitive and whose only subtournaments are contained in D_k for some k. Thus, subtournaments of D_k are the only candidates for unavoidable tournaments which occur in large
tournaments that are ϵ-far from transitive for small ϵ.

Theorem 1.1 (Fox–Sudakov) Given $\epsilon > 0$ and a natural number k, there is $n_0(k, \epsilon)$ such that if T is a tournament on $n \geq n_0(k, \epsilon)$ vertices which is ϵ-far from being transitive, then T contains D_k as a subtournament. Furthermore $n_0(k, \epsilon) \leq \epsilon^{-ck/\epsilon^2}$, for some absolute constant $c > 0$.

The authors in [6] conjectured that this bound can be further reduced to $n_0(k, \epsilon) \leq \epsilon^{-Ck}$ for some absolute constant $C > 0$. This order of growth agrees with high probability with a random tournament obtained by directing edges backwards independently with probability $\approx \epsilon$. Here we prove this conjecture.

Theorem 1.2 There is a constant $C > 0$ such that for $\epsilon > 0$ and any natural number k we have $n_0(k, \epsilon) \leq \epsilon^{-Ck}$.

Notation: Given a tournament T, we write $V(T)$ to denote its vertex set and $E(T)$ to denote the directed edge set of T. Given $v \in V(T)$ and a set $S \subset V(T)$, let $d_S^-(v) := |\{u \in S : \overrightarrow{vu} \in E(T)\}|$ and $d_S^+(v) := |\{u \in S : \overrightarrow{uv} \in E(T)\}|$. We will also write $T[S]$ to denote the induced subtournament of T on vertex set S. Given $B \subset E(T)$, we write $d_B(v) = |\{u \in V(T) : \overrightarrow{vu} \in B\}|$ and $d_B^-(v) = |\{u \in V(T) : \overrightarrow{uv} \in B\}|$. For an ordering $v_1, \ldots, v_{|T|}$ of $V(T)$ and $1 \leq i < j \leq |T|$, let $[v_i, v_j] := \{v_i, v_{i+1}, \ldots, v_j\}$. Lastly, all log functions will be to the base 2.

2 Outline of the proof of Theorem 1.2

2.1 Finding many long backwards edges in T

In [6], Theorem 1.1 was deduced from two results of independent interest. The first result showed that any tournament which is ϵ-far from being transitive must contain many directed triangles.

Theorem 2.1 (Theorem 1.3 [6]) Any n-vertex tournament T which is ϵ-far from being transitive contains at least $c\epsilon^2 n^3$ directed triangles, where $c > 0$ is an absolute constant.

As pointed out in [6], this bound is also best possible in general, as can be seen from the following tournament. Let T be given by taking k copies of $D_{n/3k}$, say on disjoint vertex sets V_1, \ldots, V_k with all edges between V_i and V_j directed forward, for $i < j$. As at least $(n/3k)^2$ edges from each copy of $D_{n/3k}$ must be reoriented in order to obtain a transitive tournament, T is $k(1/3k)^2 = 1/9k$ far from being transitive, but contains only $k.(n/3k)^3 = n^3/27k^2$ directed...
triangles. Taking $\epsilon = 1/9k$, we see that the growth rate here agrees with that given by Theorem 2.1 up to constants.

Our first improvement in the bound for $n_0(k, \epsilon)$ comes from showing that any tournament which is ϵ-far from being transitive must either contain many more directed triangles than the number given in Theorem 2.1 or contain a slightly smaller subtournament which is 2ϵ-far from being transitive.

Given an ordering $v_1, \ldots, v_{|T|}$ of the vertices of a tournament T, edges of the form $\overrightarrow{v_i v_j}$ with $i < j$ are called backwards edges. We will often list the vertices of tournaments in an order which minimizes the number of backwards edges. Such orderings are said to be optimal.

Proposition 2.2 Suppose that T is a tournament on n vertices and v_1, \ldots, v_n is an optimal ordering of $V(T)$. Then the following hold:

(i) For every $i, j \in [n]$ with $i < j$ we have
 - $d^+_{v_{i+1}, v_j}(v_i) \geq (j - i)/2$;
 - $d^-_{v_{i}, v_{j-1}}(v_j) \geq (j - i)/2$.

(ii) If $T[v_{i+1}, v_j] := T[\{v_{i+1}, \ldots, v_j\}]$ has $\delta(j - i)^2$ backwards edges in this ordering then the subtournament $T[v_{i+1}, v_j]$ is δ-far from being transitive.

Given an ordering v_1, \ldots, v_n of $V(T)$ with a backwards edge $\overrightarrow{v_i v_j}$ ($i < j$), the edge $\overrightarrow{v_i v_j} \in B$ is said to have length $j - i$.

Lemma 2.3 Suppose that T is a tournament on n vertices which is ϵ-far from being transitive and let v_1, \ldots, v_n be an optimal ordering of $V(T)$. Let B denote the collection of backwards edges in this ordering. Then one of the following holds:

(i) The subset B' of B consisting of those edges of length at least $n/16$ satisfies $|B'| \geq |B|/4$;

(ii) T contains a subtournament on at least $n/8$ vertices which is 2ϵ-far from being transitive.

The next lemma shows that if we are in case 2. of Lemma 2.3 and ϵ isn’t too large then there is a large set of backwards edges of T all of which lie in a huge number of directed triangles.

Lemma 2.4 Let T be an n-vertex tournament with optimal ordering v_1, \ldots, v_n and let B denote the set of backwards edges in this ordering, $|B| = \alpha n^2$. Suppose that the subset $B' \subset B$ of backwards edges with length at least $n/16$ satisfies $|B'| \geq \alpha n^2/4$. Then, provided that $\alpha \leq 2^{-16}$, there exists $B'' \subset B'$ satisfying $|B''| \geq |B'|/2$ with the property that each edge of B'' lies in at least
directed triangles in T.

Proof. Sketch Note that given $\overrightarrow{x_i x_j} \in B'$ with $i < j$, if k satisfies $i < k < j$ and both $\overrightarrow{x_i x_k}$ and $\overrightarrow{x_k x_j}$ are edges of T, the set $\{x_i, x_k, x_j\}$ forms a directed triangle in T. Note also that by Proposition 2.2 there are at least $(j - i)/2$ edges $\overrightarrow{x_i x_k}$ in T with $i < k < j$. In order to block such a ‘potential directed triangle’, the edge $\overrightarrow{x_k x_j}$ must lie in T. Thus there must be many edges in B which are directed away from x_j. An identical argument shows that there must be many backwards edges directed towards x_i. But as each edge in B' has many ‘potential threats’ – $(j - i)/2$ of them. By using that B is small, it can be shown that most of these potential directed triangles are not blocked and form directed triangles, as required. \(\square\)

2.2 Finding a copy of D_k in T

The second half of our argument is based on another result from [6]. Here the authors proved that the following holds:

Theorem 2.5 *(Theorem 3.5, [6])* Any n-vertex tournament with at least δn^3 directed triangle contains D_k as a subtournament provided that $n \geq \delta^{-4k/\delta}$.

By combining Lemma 2.3 and Lemma 2.4 with Theorem 2.5 it is already possible to improve the bound $n_0(k, \epsilon)$, to show that $n_0(k, \epsilon) \leq \epsilon^{-ck/\epsilon}$ for some fixed constant $c > 0$. To remove the additional ϵ term from the exponent, we modify Theorem 2.5.

The next lemma shows that if many directed triangles in Theorem 2.5 occur in a very unbalanced manner, meaning that each of these triangles contain an edge from a small set, the lower bound on n in Theorem 2.5 can be reduced. Note that this is exactly the situation given by Lemma 2.4.

Lemma 2.6 Let T be an n-vertex tournament and let E be a set of edges of βn^2 edges in T. Suppose that each edge of E occurs in at least γn directed triangles in T. Then T contains D_k as a subtournament provided $n \geq \beta^{-100k/\gamma}$.

The proof of Lemma 2.6 follows a similar outline to that of Theorem 2.5 in [6].

Theorem 1.2 can now be proven as follows. Let T be an n-vertex tournament which is ϵ-far from being transitive. By repeatedly applying Lemma 2.3 we can find a sequence of subtournaments T_1, \ldots, T_L, with $|T_i| \geq n/8^i$ for all i such that T_i is $2^i \epsilon$ -far from being transitive. When this process terminates at T_L, by Lemma 2.3 part 2. T_L must contain many ‘long backwards edges’. We then apply Lemma 2.6 to find a large set of backwards edges in T_L, each
of which occurs in many directed triangles. The theorem is then proven by applying Theorem 2.6 to this set.

References

