
Large unavoidable subtournaments

Eoin Long 1

School of Mathematical Sciences

Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University

Tel Aviv, 6997801, Israel.

Abstract

Let Dk denote the tournament on 3k vertices consisting of three disjoint vertex
classes V1, V2 and V3 of size k, each of which is oriented as a transitive subtourna-
ment, and with edges directed from V1 to V2, from V2 to V3 and from V3 to V1. Fox
and Sudakov proved that given a natural number k and ǫ > 0 there is n0(k, ǫ) such
that every tournament of order n ≥ n0(k, ǫ) which is ǫ-far from being transitive
contains Dk as a subtournament. Their proof showed that n0(k, ǫ) ≤ ǫ−O(k/ǫ2) and
they conjectured that this could be reduced to n0(k, ǫ) ≤ ǫ−O(k). Here we outline a
proof of this conjecture.
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1 Introduction

A central result in the Ramsey theory is Ramsey’s theorem [10], which says
that given any natural number k, there is an integer N such that every two
colouring of the edges of the complete graph KN contains a monochromatic
copy of Kk. An important problem in the area is to estimate the smallest
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value of N for which the theorem holds, denoted R(k). It is known that
2(1/2+o(1))k ≤ R(k) ≤ 4(1+o(1))k (see [3], [11], [5], [1]).

For general two colourings ofKN one clearly cannot guarantee any coloured
subgraph other than a monochromatic clique in Ramsey’s theorem. Bollobás
raised the question of which coloured subgraphs occur in two colourings of
KN where each colour appears on at least ǫ proportion of the edges. Let Fk

denote the collection of two coloured graphs of order 2k, in which one colour
appears as either a clique of order k or two disjoint cliques of order k. Bollobás
asked whether, given a natural k and ǫ > 0 there is M = M(k, ǫ) with the
following property: in every two colouring of the edges of KM containing both
colours on at least ǫ proportion of the edges, some element of Fk appears as
a coloured subgraph. Cutler and Montágh [2] answered this question in the
affirmative and proved that it is possible to take M(k, ǫ) ≤ 4k/ǫ. Fox and
Sudakov [6] subsequently improved this bound to show that M(k, ǫ) ≤ ǫ−ck,
for some constant c > 0. As shown in [6], this bound is tight up to the value
of the constant c in the exponent, which can be seen by taking a random two
colouring of a graph on ǫ−(k−1)/2 vertices with appropriate densities.

Here we will be concerned with an analogous question for tournaments. A
tournament is a directed graph obtained by assigning a direction to the edges
of a complete graph. A tournament is said to be transitive if it is possible to
order the vertices of the tournament so that all of its edges point in the same
direction. Let T (k) denote the smallest integer such that every tournament
on T (k) vertices contains a transitive subtournament on k vertices. A classic
result due to Erdős and Moser [4] shows that T (k) is finite for all k and gives
that 2(k−1)/2 ≤ T (k) ≤ 2k−1.

As in the two colouring graph case, it is natural ask which subtournaments
must occur in large tournament which is ‘not too similar’ to a transitive tour-
nament. An n-vertex tournament T is ǫ-far from being transitive if in any
ordering of the vertices of T , the direction of at least ǫn2 edges of T must be
switched in order to obtain a transitive tournament. In [6], Fox and Sudakov
asked the following question: given ǫ > 0, which subtournaments must an
n-vertex tournament which is ǫ-far from being transitive contain?

For any natural number k, let Dk denote the tournament on 3k vertices
consisting of three disjoint vertex classes V1, V2 and V3 of size k, each of which
is oriented as a transitive subtournament, and with all edges directed from
V1 to V2, from V2 to V3 and from V3 to V1. Taking T = Dn/3 we obtain
an n-vertex tournament which is 1

9
-far from being transitive and whose only

subtournaments are contained in Dk for some k. Thus, subtournaments of
Dk are the only candidates for unavoidable tournaments which occur in large



tournaments that are ǫ-far from transitive for small ǫ.

Theorem 1.1 (Fox–Sudakov) Given ǫ > 0 and a natural number k, there
is n0(k, ǫ) such that if T is a tournament on n ≥ n0(k, ǫ) vertices which is ǫ-far
from being transitive, then T contains Dk as a subtournament. Furthermore

n0(k, ǫ) ≤ ǫ−ck/ǫ2, for some absolute constant c > 0.

The authors in [6] conjectured that this bound can be further reduced to
n0(k, ǫ) ≤ ǫ−Ck for some absolute constant C > 0. This order of growth agrees
with high probability with a random tournament obtained by directing edges
backwards independently with probability ≈ ǫ. Here we prove this conjecture.

Theorem 1.2 There is a constant C > 0 such that for ǫ > 0 and any natural

number k we have n0(k, ǫ) ≤ ǫ−Ck.

Notation: Given a tournament T , we write V (T ) to denote its vertex set
and E(T ) to denote the directed edge set of T . Given v ∈ V (T ) and a set
S ⊂ V (T ), let d−S (v) := |{u ∈ S : −→uv ∈ E(T )}| and d+S (v) := |{u ∈ S : −→vu ∈
E(T )}|. We will also write T [S] to denote the induced subtournament of T
on vertex set S. Given B ⊂ E(T ), we write d−B(v) = |{u ∈ V (T ) : −→uv ∈ B}|
and d+B(v) = |{u ∈ V (T ) : −→uv ∈ B}|. For an ordering v1, . . . , v|T | of V (T ) and
1 ≤ i < j ≤ |T |, let [vi, vj ] := {vi, vi+1, . . . , vj}. Lastly, all log functions will
be to the base 2.

2 Outline of the proof of Theorem 1.2

2.1 Finding many long backwards edges in T

In [6], Theorem 1.1 was deduced from two results of independent interest. The
first result showed that any tournament which is ǫ-far from being transitive
must contain many directed triangles.

Theorem 2.1 (Theorem 1.3 [6]) Any n-vertex tournament T which is ǫ-
far from being transitive contains at least cǫ2n3 directed triangles, where c > 0
is an absolute constant.

As pointed out in [6], this bound is also best possible in general, as can
be seen from the following tournament. Let T be given by taking k copies of
Dn/3k, say on disjoint vertex sets V1, . . . , Vk with all edges between Vi and Vj

directed forward, for i < j. As at least (n/3k)2 edges from each copy of Dn/3k

must be reoriented in order to obtain a transitive tournament, T is k(1/3k)2 =
1/9k far from being transitive, but contains only k.(n/3k)3 = n3/27k2 directed



triangles. Taking ǫ = 1/9k, we see that the growth rate here agrees with that
given by Theorem 2.1 up to constants.

Our first improvement in the bound for n0(k, ǫ) comes from showing that
any tournament which is ǫ-far from being transitive must either contain many
more directed triangles than the number given in Theorem 2.1 or contain a
slightly smaller subtournament which is 2ǫ-far from being transitive.

Given an ordering v1, . . . , v|T | of the vertices of a tournament T , edges of
the form ←−−vivj with i < j are called backwards edges. We will often list the
vertices of tournaments in an order which minimizes the number of backwards
edges. Such orderings are said to be optimal.

Proposition 2.2 Suppose that T is a tournament on n vertices and v1, . . . , vn
is an optimal ordering of V (T ). Then the following hold:

(i) For every i, j ∈ [n] with i < j we have
• d+[vi+1,vj ]

(vi) ≥ (j − i)/2;

• d−[vi,vj−1]
(vj) ≥ (j − i)/2.

(ii) If T [vi+1, vj ] := T [{vi+1, . . . , vj}] has δ(j − i)2 backwards edges in this

ordering then the subtournament T [vi+1, vj] is δ-far from being transitive.

Given an ordering v1, . . . , vn of V (T ) with a backwards edge ←−−vivj (i < j),
the edge ←−−vivj ∈ B is said to have length j − i.

Lemma 2.3 Suppose that T is a tournament on n vertices which is ǫ-far
from being transitive and let v1, . . . , vn be an optimal ordering of V (T ). Let

B denote the collection of backwards edges in this ordering. Then one of the

following holds:

(i) The subset B′ of B consisting of those edges of length at least n/16 sat-

isfies |B′| ≥ |B|/4;

(ii) T contains a subtournament on at least n/8 vertices which is 2ǫ-far from
being transitive.

The next lemma shows that if we are in case 2. of Lemma 2.3 and ǫ isn’t
too large then there is a large set of backwards edges of T all of which lie in
a huge number of directed triangles.

Lemma 2.4 Let T be an n-vertex tournament with optimal ordering v1, . . . , vn
and let B denote the set of backwards edges in this ordering, |B| = αn2. Sup-

pose that the subset B′ ⊂ B of backwards edges with length at least n/16
satisfies |B′| ≥ αn2/4. Then, provided that α ≤ 2−16, there exists B′′ ⊂ B′

satisfying |B′′| ≥ |B′|/2 with the property that each edge of B′′ lies in at least



n/64 directed triangles in T .

Proof. Sketch Note that given ←−−xixj ∈ B′ with i < j, if k satisfies i < k < j
and both −−→xixk and −−→xkxj are edges of T , the set {xi, xk, xj} forms a directed
triangle in T . Note also that by Proposition 2.2 there are at least (j − i)/2
edges −−→xixk in T with i < k < j. In order to block such a ‘potential directed
triangle’, the edge ←−−xkxj must lie in T . Thus there must be many edges in
B which are directed away from xj . An identical argument shows that there
must be many backwards edges directed towards xi. But as each edge in B′

has many ‘potential threats’ – (j − i)/2 of them. By using that B is small, it
can be shown that most of these potential directed triangles are not blocked
and form directed triangles, as required. ✷

2.2 Finding a copy of Dk in T

The second half of our argument is based on another result from [6]. Here the
authors proved that the following holds:

Theorem 2.5 (Theorem 3.5, [6]) Any n-vertex tournament with at least

δn3 directed triangle contains Dk as a subtournament provided that n ≥ δ−4k/δ.

By combining Lemma 2.3 and Lemma 2.4 with Theorem 2.5 it is already
possible to improve the bound n0(k, ǫ), to show that n0(k, ǫ) ≤ ǫ−ck/ǫ for some
fixed constant c > 0. To remove the additional ǫ term from the exponent, we
modify Theorem 2.5.

The next lemma shows that if many directed triangles in Theorem 2.5 occur
in a very unbalanced manner, meaning that each of these triangles contain an
edge from a small set, the lower bound on n in Theorem 2.5 can be reduced.
Note that this is exactly the situation given by Lemma 2.4.

Lemma 2.6 Let T be an n-vertex tournament and let E be a set of edges of

βn2 edges in T . Suppose that each edge of E occurs in at least γn directed

triangles in T . Then T containsDk as a subtournament provided n ≥ β−100k/γ.

The proof of Lemma 2.6 follows a similar outline to that of Theorem 2.5
in [6].

Theorem 1.2 can now be proven as follows. Let T be an n-vertex tourna-
ment which is ǫ-far from being transitive. By repeatedly applying Lemma 2.3
we can find a sequence of subtournaments T1, . . . , TL, with |Ti| ≥ n/8i for all
i such that Ti is 2

iǫ -far from being transitive. When this process terminates
at TL, by Lemma 2.3 part 2. TL must contain many ‘long backwards edges’.
We then apply Lemma 2.6 to find a large set of backwards edges in TL, each



of which occurs in many directed triangles. The theorem is then proven by
applying Theorem 2.6 to this set.

References

[1] Conlon, D., A new upper bound for diagonal Ramsey numbers, Ann. of Math.
170 (2009), 941-960.

[2] Cutler, J. and B. Montagh, Unavoidable subgraphs of colored graphs, Discrete
Math., 308 (2008), 4396-4413.
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