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Abstract

We show that for any 2-local colouring of the edges of a complete bipartite graph,
its vertices can be covered with at most 3 disjoint monochromatic paths. And, we
can cover almost all vertices of any complete or complete bipartite r-locally coloured
graph with O(r2) disjoint monochromatic cycles.
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1 Introduction

1.1 History of monochromatic partitions

The problem of partitioning a graph into few monochromatic paths or cycles,
first formulated explicitly in the beginning of the 80’s [6], has lately received a
fair amount of attention. Its origin lies in Ramsey theory and its subject are
complete graphs (later substituted with other types of graphs), whose edges
are coloured with r colours. Call such a colouring an r-colouring; note that
this need not be a proper edge-colouring. The challenge is now to find a small
number of disjoint monochromatic paths, which together cover the vertex set
of the underlying graph. Or, instead of disjoint monochromatic paths, we
might ask for disjoint monochromatic cycles. Here, single vertices as well as
single edges count as cycles. Such a cover is called a monochromatic path
partition, or a monochromatic cycle partition, respectively. It is not difficult
to construct r-colourings that do not allow for partitions into less than r paths,
or cycles. For instance, take vertex sets V1, . . . , Vr with |Vi| = 2i, and for i ≤ j
give all Vi–Vj edges colour i.

It has been long known that for r = 2, any r-coloured complete graph Kn

has a partition into two disjoint paths, regardless of the size of n [5]. Moreover,
these paths have different colours. An extension of this fact, namely that every
2-colouring of Kn has a partition into two monochromatic cycles of different
colours was conjectured by Lehel, and verified for large n in [17] and in [1],
and for all values of n in [2].

A generalisation of these two results for other values of r was conjectured
by Gyárfás, and by Erdős, Gyárfás and Pyber, respectively. More precisely,
they conjectured that any r-coloured Kn can be partitioned into r monochro-
matic paths [7], and even into r monochromatic cycles [4]. The conjecture for
cycles was recently disproved by Pokrovskiy [19]. He gave counterexamples
for all r ≥ 3, but also showed that the conjecture for paths is true for r = 3.
It is further known that any r-coloured Kn can be partitioned into O(r log r)
monochromatic cycles [9]. We remark that Pokrovskiy’s counterexamples have
partitions into r+1 cycles (and one of these is a single vertex), and he conjec-
tures r disjoint cycles suffice for covering all but a constant number c = c(r)
of vertices [19].

Monochromatic path/cycle partitions have also been studied for bipartite
graphs, mainly for r = 2. Interestingly, a certain class of colourings makes
a direct extension of the results above impossible. A 2-colouring of Kn,n is
called a split colouring if there is a colour-preserving homomorphism from
the edge-coloured Kn,n to a properly edge-coloured K2,2. It turns out that in



the case of a split colouring one might need three monochromatic paths, but
otherwise Kn,n can be partitioned into two paths of distinct colours [19].

Split colourings can be generalised to more colours, providing a general
lower bound of 2r−1 on the path/cycle partition number for Kn,n. For r = 3,
this bound is asymptotically correct [14]. For an upper bound, it is known
that any r-coloured Kn,n can be partitioned into O(r2 log r) monochromatic
cycles [18]. As a byproduct of Theorem 1 (b) below, we obtain an improvement
of this bound to O(r2).

1.2 Local colourings and our results

We establish new bounds for the size of cycle partitions with respect to local
colourings. Local colourings are a natural way to generalise r-colourings, and
first appeared in the context of Ramsey theory [8,21]. A colouring of the edges
of a graph is said to be r-local if every vertex is adjacent to edges of at most r
distinct colours. For instance, a rainbow colouring of the triangle is 2-local.

Recently, Conlon and Stein [3] showed that any r-local colouring of Kn

admits a partition into O(r2 log r) monochromatic cycles, and, if r = 2, then
two cycles (of different colours) suffice. We improve their bound for complete
graphs, and also give a bound for monochromatic cycle partitions in bipartite
graphs.

Theorem 1.1 [15] For every r ≥ 1 there is an n0 such that for n ≥ n0 the
following holds.

(a) If Kn is r-locally coloured, then all its vertices can be covered with at most
2r2 disjoint monochromatic cycles.

(b) If Kn,n is r-locally coloured, then all its vertices can be covered with at
most 4r2 disjoint monochromatic cycles.

The proof of Theorem 1.1 is described in Section 2. We do not believe our
results are best possible, but suspect that in both cases (Kn and Kn,n), the
number of cycles needed should be linear in r.

Conjecture 1.2 There is a c such that for every r, any r-local colouring of
Kn or of Kn,n admits a covering with cr disjoint cycles.

Our second result treats the case r = 2:

Theorem 1.3 [15] Let the edges of Kn,n be coloured 2-locally. Then Kn,n can
be partitioned into 3 or less monochromatic paths.



The proof of Theorem 1.2 is purely combinatorial. We first break down
the colouring to three possible shapes. It is then shown that for each of the
shapesKn,n can be partitioned into 3 or less monochromatic paths. For details,
see [15].

2 Proof of Theorem 1.1

In this section we give an outline of the proof of Theorem 1.1(a). The proof
of Theorem 1.1(b) is very similar.

2.1 Part I: Monochromatic connected matchings

We need the notion of monochromatic connected matchings. The use of these
matching, together with an application of the regularity lemma (see below)
was first used by �Lukzak [16] and has by now become a standard approach. A
monochromatic connected matching is a matching in a connected component
of the graph spanned by the edges of a single colour.

The following lemma plays a key role in the proof.

Lemma 2.1 [15] If Kn is r-locally edge coloured, then V (Kn) can be covered
with at most r(r + 1)/2 monochromatic connected matchings.

The proof of Lemma 2.1 uses induction, and the following simple lemma,
which itself is proved with a greedy strategy:

Lemma 2.2 [15] For k ≥ 2, let the edges of a graph G be coloured k-locally.
Suppose there are m monochromatic components that together cover V (G), of
colours c1, . . . , cm.
Then there are m vertex-disjoint monochromatic connected matchings M1, . . . ,
Mm, of colours c1, . . . , cm, such that the inherited colouring of G−V (

⋃m
i=1 Mi)

is a (k − 1)-local colouring.

2.2 Part II: Regularity

The aim of this part of the proof is to show the following auxiliary lemma.

Lemma 2.3 [15] If Kn is r-locally edge coloured, then all but o(n) vertices
of Kn can be covered with at most r(r + 1)/2 monochromatic cycles.

For our proof of Lemma 2.3, we assume the reader’s familiarity with Sze-
merédi’s regularity lemma [20], as described in any standard graph theory
textbook. We will use the regularity lemma for edge-coloured graphs, which



gives a partition, where almost all pairs are highly regular in all colours. For
this, however, it is necessary that the total number of colours in bounded, a
condition our host graph, the r-locally coloured Kn, does not a priori fulfill.

So, for our application of the multi-coloured regularity lemma we simply
delete all edges of all the colours of lowest density, as these turn out to be few.
We then obtain a vertex-partition of Kn, where most pairs are highly regular
in all of the colours. The reduced graph R inherits an edge-colouring from
the r-local colouring of Kn, by simply giving each pair the colour which has
the largest density in the pair. The graph R then turns out to be an almost
complete bipartite graph that is r-locally coloured. For details see [15].

We now use a robust version of Lemma 2.1, which permits us to partition
almost all vertices of R into r(r + 1)/2 monochromatic connected match-
ings. In the subsequent step, we apply a specific case of the blow up lemma
(see [10,13,16]) in order to find r(r + 1)/2 monochromatic cycles, which to-
gether form a partition of almost all vertices of Kn, using the monochromatic
connected matchings of R as a roadmap. This proves Lemma 2.3.

2.3 Part III: Absorption

For the rest of the proof of Theorem 1.1(a), we combine ideas of [11] and [12]
with Lemma 2.3.

In a first step we find a large monochromatic uniform subgraph H of the
r-locally coloured complete graph Kn from Theorem 1.1(a). More precisely, H
has the property that it remains hamiltonian even if o(|V (H)|) of its vertices
are deleted. The size of H is linear in n. The existence of such a subgraph H
follows from results of [11,12], see also [14].

Next, we cover almost all vertices ofKn−V (H) with the help of Lemma 2.3,
using at most r(r + 1)/2 vertex-disjoint monochromatic cycles. Denote by S
the vertices of Kn − V (H) that are not covered by these cycles.

Observe that by choosing n large enough, we can ensure that the size of
S sufficiently small compared to the order of H, to allow for applying the
following lemma of [3]:

Lemma 2.4 Suppose that A and B are vertex sets with |B| ≤ |A|/rr+3 and
the complete bipartite graph between A and B is r-locally coloured. Then all
vertices of B can be covered with at most r2 disjoint monochromatic cycles.

Apply Lemma 2.4 to the graph induced by the edges between S and H.
This gives a cover of the vertices of S with at most r2 vertex-disjoint monochro-
matic cycles, whose union we denote by C. The robust hamiltonicity of H



(i.e. the property from above) guarantees that H − V (C) is hamiltonian. As
H is monochromatic we can finish by taking one more monochromatic cycle,
which covers H − V (C).

In total, we used r(r + 1)/2 + r2 + 1 ≤ 2r2 disjoint monochromatic cycles
to cover all of Kn. This proves Theorem 1.1(a).
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