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Abstract

We study drawings of graphs on the torus with crossings allowed. A question posed
in [4], specialized to the case of the torus, asks, whether for every disconnected
graph there is a drawing in the torus with the minimal number of crossings, such
that one of the graphs is drawn in a planar disc. We reduce the problem to an
interesting question from the geometry of numbers and solve a special case.
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1 Introduction

Planarity is a central topic in the graph theory. There are at least two fre-
quently used ways to extend this notion: we may try to embed a graph without
a crossing on a different surface than the plane and we may draw the graph
in the plane with as few crossings as possible. We are going to study the
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common extension of these two approaches. Following Širáň [6] and Archdea-
con et al. [1] we define cri(G), the i-th orientable crossing number of G as
the minimal number of crossings, when we draw G in the two-dimensional
compact manifold (surface) of genus i—the sphere with i handles added. As
it is usual, we assume that no three edges go though the same vertex, no edge
goes though a vertex, and edges are simple curves in the surface. When two
edges cross several times, we count all of the crossings.

The authors of [1,6] deal mainly with the issue of characterizing the cross-
ing sequences—sequences (cri(G))i≥0. They prove that every sequence of inte-
gers that is decreasing (until it hits 0) and convex is the crossing sequence of
some graph. Later, DeVos et al. [4] prove that every sequence (a, b, 0, 0, . . . )
(a > b are positive integers) is a crossing sequence. In the same paper [4] the
following problem is posed.

Problem 1.1 Let H be a disjoint union of graphs G and G′, and let S be a
(possibly nonorientable) surface. Is there an optimal drawing of H on S, such
that no edge of G crosses an edge of G′?

If we have a graph which is a disjoint union of G and G′, then we can
always “use part of the surface for G and the other part for G′”—technically,
we obtain surface of genus i by glueing surfaces of genera j and i− j along a
circle and draw G in the first one and G′ in the second one. This leads to

cri(G ·∪G′) ≤ min
j

(
crj(G) + cri−j(G

′)
)
.

If the answer to Problem 1.1 is positive, then this inequality is in fact an
equality.

The answer to Problem 1.1 is trivial when S is the plane. It is not hard to
prove it for S being a projective plane [4]. Beaudou et al. [2] prove the result
for the Klein bottle. Here, we deal with the first orientable case, the torus.

Our main tool is a result of de Graaf and Schrijver [3] that provides an
algebraic characterization of the minimal number of crossings. To state the
result, we must introduce a bit of terminology first.

The crossing number cr(C,D) of two closed curves C and D is simply
the total number of intersections. If G is a graph with a fixed drawing then
cr(G,D) is the number of intersections between G and D. The following
variants require the notion of homotopy (continuous deformation of one closed
curve into another. We define mincr(C,D) to be the minimum of cr(C ′, D′) for
some curve C ′ homotopic to C and another one, D′, homotopic to D. Finally,
mincr(G,D) is the minimum of cr(G,D′) for a curve D′ homotopic to D.



The following appears as Theorem 76.1 in Schrijver’s excellent mono-
graph [5].

Theorem 1.2 Let G = (V,E) be an Eulerian graph embedded in a compact
surface S. Then the edges of G can be decomposed into closed curves C1, . . . ,
Ck such that

mincr(G,D) =
k∑

i=1

mincr(Ci, D)

for each closed curve D on S.

2 Drawing graphs on the torus

In this section we reduce Problem 1.1 for the torus to an inequality, although
a rather unwieldy one. We need to introduce some notation first. For vectors
u, v ∈ R

2 we let (u, v) be the 2× 2 matrix with columns u and v. Given two
collections (i.e., multisets) of vectors, X and X ′, we define

L(X,X ′) =
∑
u∈X

∑
v∈X′

| det(u, v)|.

Further, we define

N(X) =
∑
u∈X

|u1| ·
∑
v∈X

|v2|,

where u1, u2 are the two coordinates of u. For any 2 × 2 matrix A we define
NA(X) = N(AX), where AX is the collection {Av | v ∈ X}. Finally, we
define M(X) to be the minimal value of NA(X), when A is a 2×2 unimodular
matrix (that is, an integer matrix of determinant ±1). It is a simple exercise
to show that M(X) is, indeed, well-defined, whenever X is finite.

Problem 2.1 Let X, X ′ be two finite collections of vectors in Z
2. Is it true

that
L(X,X ′) ≥ min{M(X),M(X ′)}?

Theorem 2.2 If the answer to Problem 2.1 is positive, then also the answer
to Problem 1.1 is positive.

Proof. Consider an optimal drawing of H = G ·∪G′ on the torus; that is, one
(of possibly many) drawings with the minimal number of crossings.

If two edges of G intersect, we may subdivide these two edges and identify
the two new vertices. Repeating as necessary, and using the same procedure
for G′, we arrive to the case where G and G′ are without self-intersections. It
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Fig. 1. Illustration of homotopy types of curves on the torus. The basis curves
α and β together with a curve of type 3α+ 2β.

follows that we may assume, that both G and G′ are embedded in the torus.
Our goal is to prove that one of G and G′ may be embedded in a planar disc
with at most the same number of crossings as our drawing of H has.

Next, we double each edge of G and of G′. We draw the new edges very
closely to the original ones, so that the number of crossings is increased four-
times. It is easy to prove that if the original drawing was optimal than we
have obtained an optimal drawing of the “doubled” graph. Thus, we may
assume G and G′ are Eulerian graphs.

Now we are in position to apply Theorem 1.2, twice. Using it, we decom-
pose the edges of G into closed curves C1, . . . , Ck and the edges of G′ into
curves C ′

1, . . . , C
′
k.

To proceed further, we need to classify the homotopy types of the curves.
To this end, we fix two noncontractible curves in the torus, say α and β, in
such a way that they have exactly one point in common. It is well-known that
every closed curve in the torus is homotopic to mα+nβ for some integers m,n
(see Figure 1). We let (mi, ni) be the “coordinates” of the curve Ci and define
(m′

i, n
′
i) similarly. Note that we need to choose an (arbitrary) orientation of

each of the curves, so the vectors (mi, ni), (m′
i, n

′
i) are only defined up to

multiplication by −1.
Let C and C ′ be curves of type (m,n) and (m′, n′). It is easy to ver-

ify that mincr(C,C ′) =
∣∣det

⎛
⎝m n

m′ n′

⎞
⎠∣∣. Two applications of the formula in

Theorem 1.2 yield that the number of crossings between G and G′ is at least
L(X,X ′). Here we use the function L defined in the beginning of this section.
We put X = {(mi, ni)

T : i = 1, . . . , k} and define X ′ similarly.

Let us compare this to drawing one graph in the torus without any crossing
at all (this is possible by our assumptions) and the other, say G, in a planar
disc. There are many planar drawings of G, we will only use a simple type
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Fig. 2. Illustration of the planar way to draw a toroidal graph.

obtained from its toroidal drawing.

We represent the torus as a rectangle with a “wrap-around”. From the
notation we introduced for the curves Ci we see that the top and bottom
side of the rectangle are intersected (

∑k
i=1 |mi|)-times, while the left and the

right one (
∑k

i=1 |ni|)-times (we may assume that no curve goes through the
corners).

Thus, when we connect these points by curves in a plane, as depicted in
Figure 2, the number of intersections that we introduce is N(X).

We may possibly do better, though. We do have a choice how to cut the
torus to get a rectangle. To do so, we may choose a different pair of closed
curves than α and β. We choose curves x1α + y1β and x2α + y2β such that

xi, yi are integers and det

⎛
⎝x1 x2

y1 y2

⎞
⎠ = ±1. In other words, B =

⎛
⎝x1 x2

y1 y2

⎞
⎠ is

an unimodular matrix. It is easy to see that to transform the “coordinates” X
we need to multiply by A = B−1, another unimodular matrix. Thus, we may
draw G in a planar disc with NA(X) crossings for any unimodular matrix A.
Also, we may choose to draw in a planar way G′ instead of G. Consequently, if
L(X,X ′) ≥ min{M(X),M(X ′)}, we certainly can achieve the same or better
number of crossings with a drawing where G and G′ do not intersect.



3 Reducing to a finite number of variables

In this section we reduce the inequality in Problem 2.1 to a simpler one, with
only finitely many variables. The main idea of the reduction is that we collect
together vectors of X that are in the same part of the plane. We will not
reduce the general case though, we need to assume X = X ′. Arguable, this
is the most difficult case, as the quantity L(X,X ′) seems smallest in such
case. Unfortunately, we have been unable (yet) to transform this feeling into
a solution of Problem 2.1 in the general case.

Lemma 3.1 Define a cone P in R
8:

P = {(x1, y1, x2, y2, x3, y3, x4, y4) ∈ R
8 : x1 ≥ 0, x2 ≥ 0, x3 ≤ 0, x4 ≤ 0,

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0,

x1 ≥ y1, x2 ≤ y2, x3 + y3 ≥ 0, x4 + y4 ≤ 0,

y1 + y2 + y3 − y4 ≥ −2x3,

x1 + x2 + x3 − x4 ≥ 2y4,

− y1 + y2 + y3 + y4 ≥ 2x2,

x1 − x2 − x3 − x4 ≥ 2y1}

Define a quadratic function f(x1, . . . , y4) as

(x1−x2−x3−x4)y2+(x1+x2+x3−x4)y3+(x1+x2+3x3+x4)y4−(x1+3x2+x3+x4)y1.

Then f ≥ 0 on P .

First we show how to apply this lemma to prove a special case of our
Problem 2.1. In the graph-drawing setting, this case corresponds to the two
components, G and G′ being isomorphic and in drawn in the same way.

Theorem 3.2 The answer to Problem 2.1 is positive whenever X = X ′.

Proof. First, we assume that X is such that the M(X) = N(X). That is,
the minimal value of NA(X) is attained for A = I. Clearly, this is without
loss of generality, as we may possibly replace X with AX.

Next, we note that neither L(X,X) nor M(X) change if we multiply
some of the vectors by a −1. Thus, we may assume that for every v ∈ X
the second coordinate, v2, is nonnegative. We partition the collection X as
Q1 ·∪Q2 ·∪Q3 ·∪Q4 according to the sign of v1, v1+ v2, and v1− v2; see the figure
below. (Vertices on the boundary are assigned arbitrarily.)
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For k = 1, . . . , 4 we put (xk, yk)
T =

∑
v∈Qk

v. The first eight inequalities
in the definition of P are a simple consequence of this definition.

From the minimality of NI(X) it follows that for for each matrix A ∈
{⎛⎝1 ±1

0 1

⎞
⎠ ,

⎛
⎝ 1 0

±1 1

⎞
⎠}

we have N(AX) ≥ N(A). When we express this in

terms of the xi’s and yi’s, we get the remaining eight inequalities in the defini-
tion of P . It remains to see that Lemma 3.1 guarantees that L(X,X) ≥ N(X).
First, we observe that

L(X,X) =
∑
u∈X

∑
v∈X

| det(u, v)| =
4∑

i,j=1

∑
u∈Qi,v∈Qj

| det(u, v)| ≥

≥
4∑

i,j=1

∣∣∣
∑

u∈Qi,v∈Qj

det(u, v)
∣∣∣ =

4∑
i,j=1

∣∣∣det
⎛
⎝xi xj

yi yj

⎞
⎠
∣∣∣.

Similarly,

N(X) =
4∑

i,j=1

|xi| · |yj| = (x1 + x2 − x3 − x4) · (y1 + y2 + y3 + y4).

A bit of calculation reveals that f in the statement of Lemma 3.1 is the
difference of the last terms of the previous two equations; thus L(X,X) −
N(X) ≥ f(x1, . . . , y4). It follows L(X,X) ≥ N(X), which finishes the proof.

4 Solving the inequality

In this section we prove Lemma 3.1. There are several general methodologies
to solve this type of inequality: Groebner basis and Positivestellensatz being
the top two. Unfortunately, we have been unable to make these techniques
work for our case: at some point, we needed a computer assistance and the
program ran out of memory after longish computation. Thus, we settle for
a very down-to-earth approach that begs for an improvement. Due to ho-
mogeneity of the quadratic function f we only need to verify that f ≥ 0 on
P ∩ [−1, 1]8. To this end, we decompose this set into 216 parts based on which



of the defining inequalities are satisfied with an equality. Each of these sub-
problems is solved by an easy differentiation and the extremal point is checked
for being nonnegative. The calculations were made in the computer algebra
system Sage [7], the file needed to reproduce them is available at the third
author’s web page [8].

5 Conclusion

We approach the problem of drawing disconnected graphs on torus, Prob-
lem 1.1, by algebraic means: Problem 2.1. Then we solve a special case of
Problem 2.1 by reducing to a finite number of variables and solving that by
using a computer algebra system. The special case corresponds to the case
when the graph we are drawing consists of two isomorphic components, say
G = G1∪G2. Our result shows that in an optimal drawing of G, the drawings
of G1 and of G2 cannot be isomorphic. More importantly, our result suggests,
that approaching Problem 1.1 via Problem 2.1 is a viable option.
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