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Abstract

We show that any colouring with three colours of the edges of the complete bipartite
graph Kn,n contains 18 vertex-disjoint monochromatic cycles which together cover
all vertices. The minimum number of cycles needed for such a covering is five, and
we show that this lower bound is asymptotically true. This extends known results
for complete graphs.
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1 Introduction

1.1 Cycle partitioning complete graphs

Given an arbitrary colouring of the edges of a graph G with r colours, we are
interested in determining the smallest number of monochromatic cycles that
partition the vertex set of G. (Here, an r-edge-colouring is not necessarily
proper, and cycles may be single vertices, edges or the empty set.) Lately, this
question received a considerable amount of attention from the community.

For r-edge-coloured complete graphs Kn, an easy construction shows that
at least r cycles are necessary to cover all the vertices, and Erdős, Gyárfás
and Pyber [5] show that, no matter how large the graph is, cr2 log r cycles
always suffice, where c is some absolute constant. The currently best known
upper bound of 100r log r monochromatic cycles is due to Gyárfás, Ruszinkó,
Sárközy and Szemerédi [6]. In [5], it was conjectured that actually r cycles
suffice, which, for r = 2, had been suggested earlier by Lehel [2] in a stronger
form (the two cycles should have different colours). Lehel’s conjecture was
settled for large n in [14,1], and for all n in [4]. For r = 3, Gyárfás, Ruszinkó,
Sárközy and Szemerédi [9] showed the following theorem.

Theorem 1.1 For any 3-edge-colouring of Kn,

(a) there is a partition of all but o(n) vertices of Kn into 3 monochromatic
cycles, and

(b) if n is large enough, then the vertices of Kn can be partitioned into 17
monochromatic cycles.

Actually, by a slight modification of their method, one can replace the
number 17 with 10. However, the conjecture of Erdős, Gyárfás and Pyber was
finally disproved by Pokrovskiy [16] for all r ≥ 3. In his examples, there are
partitions of all but exactly one vertex into r monochromatic cycles. In light
of this, several authors [3,16] proposed toning down the conjecture, allowing
for a constant number of uncovered vertices.
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1.2 Cycle partitioning complete bipartite graphs

For the balanced complete bipartite graph Kn,n whose edges are coloured with
r colours, 2r−1 is the best known lower bound for the number of cycles needed
to cover all the vertices. Indeed, take a properly r-edge-coloured Kr,r, replace
each of the vertices in one partition class with r new vertices and replace
one vertex in the other class with (r(r − 1) + 1) new vertices. Let this new
graph H be complete bipartite and colour the edges in such a way that each
edge of H has the same colour as its projection onto Kr,r. Since no two of
the unreplaced vertices lie on a common monochromatic cycle, we need r − 1
cycles to cover all of them. As the vertices of the other side of Kn,n have been
blown up to the size of r each, we need r more cycles to cover the rest of the
graph. Note that we can further blow up each vertex equally to give examples
of graphs which can not be covered by 4 monochromatic cycles and additional
o(n) single vertices. A similar construction is given in [16]. For the upper
bound for general r, Haxell [10], answering a question from [5], showed that
O((r log r)2) monochromatic cycles suffice to partition all the vertices. This
bound has been improved to O(r2 log r) by Peng et al. [15] and recently in a
more general setting to O(r2) [12].

For r = 2, Pokrovskiy [16] showed that any 2-edge-coloured Kn,n can be
partitioned into 2 monochromatic paths, unless the colouring is a so-called
split colouring. A split colouring of Kn,n is a colouring of the edges such that
there is a colour-preserving homomorphism from the edge-coloured Kn,n to
a properly edge-coloured K2,2. In the case of a split colouring, one quickly
notes that three monochromatic cycles (or paths) are always enough to cover
all vertices, and this is best possible. Further, in [17] in is shown that 12
monochromatic cycles suffice to partition all the vertices, and with three cycles
we can partition all but o(n) of the vertices. Haxell’s [10] proof yields that in
the case r = 3, 1695 monochromatic cycles suffice to partition all vertices.

We improve this bound, and also show that asymptotically five cycles are
enough, which is best possible by the above construction. Our main result is
bipartite version of Theorem 1.1:

Theorem 1.2 (Main result) For any 3-edge-colouring of Kn,n,

(a) there is a partition of all but o(n) vertices of Kn,n into five monochromatic
cycles, and

(b) if n is large enough, then the vertices of Kn,n can be partitioned into 18
monochromatic cycles.

The remainder of this abstract is devoted to an outline of the proof of



Theorem 1.2.

2 Partitioning into 18 cycles

The proof of Theorem 1.2 follows roughly the strategy of the proof of The-
orem 1.1. The main difference is that at some point the bipartite setting
requires us to switch or extend some of the arguments. In the following two
subsections we outline the proofs of Theorem 1.2(a) and (b). We finish with
a sketch of the proof of our key lemma in Subsection 2.3.

2.1 Proof of Theorem 1.2(a)

The proof of Theorem 1.2(a) involves the construction of large monochromatic
connected matchings and an application of the regularity lemma [18], the
combination of which has been introduced by �Luczak [13] and has become a
standard approach. A monochromatic connected matching is a matching in a
connected component of the graph spanned by the edges of a single colour.
(And such a component is called a monochromatic component.) The following
is our key lemma, which takes up most of the proof – see Subsection 2.3.

Lemma 2.1 Let the edges of Kn,n be coloured with three colours. Then there
is a partition of the vertices of Kn,n into five or less monochromatic connected
matchings.

Now for the proof of Theorem 1.2(a), assume we are given a 3-edge-coloured
Kn,n. We apply the regularity lemma, and the majority colours between the
clusters induce a 3-edge-colouring of the reduced graph R which is almost
complete bipartite. We then use a robust version of Lemma 2.1, which permits
us to partition almost all of R into five monochromatic connected matchings.
In the subsequent step, we apply a specific case of the blow-up lemma (see
[11,13,8]) to get from our matchings in R to five monochromatic cycles in Kn,n

which together partition almost all of the vertices.

2.2 Proof of Theorem 1.2(b)

The proof of Theorem 1.2(b) combines ideas of Haxell [10] and Gyárfás et
al. [9] with Theorem 1.2(a). First, we fix a large monochromatic subgraph H,
which has the property that it is Hamiltonian and remains so even if some of
the vertices are deleted from it. Then, using Theorem 1.2(a), we cover almost
all vertices of Kn,n − V (H) with five vertex-disjoint monochromatic cycles.
The amount of still uncovered vertices is much smaller than the order of H,



this allows us to apply a lemma from [6] in order to absorb these vertices using
only a few more cycles, running through vertices of H. We finish by taking
one more monochromatic cycle, which covers the remains of H. Here are some
more details:

We call a balanced bipartite subgraphH of a 2n-vertex graph ε-Hamiltonian,
if any balanced bipartite subgraph of H with at least 2(1 − ε)n vertices is
Hamiltonian. The next lemma is a combination of results from [10,15].

Lemma 2.2 For any 1 > γ > 0, there is an n0 ∈ N such that any balanced
bipartite graph on 2n ≥ 2n0 vertices and of edge density at least γ has a
γ/4-Hamiltonian subgraph of size at least γ3024/γn/3.

The next lemma is due to Gyárfás et al. It allows us to absorb small vertex
sets with few monochromatic cycles.

Lemma 2.3 (Gyárfás et al. [7]) For any r ≥ 1, there is a constant n0 ∈ N

such that for n ≥ n0 and m ≤ n
(8r)8(r+1) , and for any r-colouring of Kn,m, there

are 2r disjoint monochromatic cycles covering all m vertices on the smaller
side.

Now to prove Theorem 1.2(b), assume that Kn,n is 3-edge-coloured. Let
A and B be the two partition classes of the 3-edge-coloured Kn,n. We assume
that n ≥ n0, where we specify n0 later. Pick subsets A1 ⊆ A and B1 ⊆ B
of size �n/2� each. Say red is the majority colour of [A1, B1], the subgraph
of Kn,n induced by the vertex set A1 ∪ B1. Lemma 2.2 applied with γ = 1/3
yields a red 1/12-Hamiltonian subgraph [A2, B2] of [A1, B1] with

|A2| = |B2| ≥ 3−9999|A1| ≥ 3−10
4

n.

Set H := G−(A2∪B2), and note that each vertex class of H has order at least
	n/2
. Let δ := 24−32 · 3−104 . Assuming n0 is large enough, Theorem 1.2(a)
yields five monochromatic vertex-disjoint cycles covering all but at most 2δn
vertices of H. If there are any isolated vertices among these cycles, we extend
them to edges for sakes of balancedness. Let XA ⊆ A (resp. XB ⊆ B) be the
set of uncovered vertices in A (resp. B). We then have |XA| = |XB| ≤ δn.

By the choice of δ, and since we assume n0 to be sufficiently large, we can
apply Lemma 2.3 to the bipartite graphs [A2, XB] and [B2, XA]. We obtain
a union C of twelve vertex-disjoint monochromatic cycles that together cover
XA ∪XB. As |XA| = |XB| ≤ δn ≤ 3−10

4
/12, we know that [A2, B2]− V (

⋃ C)
contains a red Hamiltonian cycle, because [A2, B2] is 1/12-Hamiltonian. Thus,
in total, we covered G with at most 5+12+1 = 18 vertex-disjoint monochro-
matic cycles.



Fig. 1. The colouring of Kn,n. The edges represent complete bipartite graphs in the
respective colour.

2.3 Proof of Lemma 2.1

The proof of Lemma 2.1 is involved, but purely combinatorial. Here we present
some of the steps to give an idea of the argument. We remark that the proof
of the robust version of Lemma 2.1 follows virtually the same pattern in a
much more technical environment. Before we start, we need one more lemma,
which covers the case of 2 colours. It follows from the above-mentioned result
of [16].

Lemma 2.4 Let the edges of Kn,n be coloured in red and blue. Then Kn,n can
be covered with two vertex disjoint monochromatic connected matchings, one
of each colour, or the colouring is split. In the latter case Kn,n can be covered
with one red and two blue, and also with two red and one blue vertex disjoint
monochromatic connected matchings.

Now let us assume that Kn,n is edge-coloured in red, green and blue. We
first reduce the colouring to a form, where we have more information about
the monochromatic components. Our first step for instance is the following
claim.

Claim 2.5 Each colour has at least three non-trivial components.

Proof. We assume the opposite for colour red, say. Let R1 and R2 be com-
ponents in red (possibly identical and/or trivial) and assume that all other
red components are trivial. Let M be a maximum red matching in R1 ∪ R2.
Then every edge in the balanced complete bipartite subgraph Kn,n − V (M)
is green or blue. Hence we can apply Lemma 2.4 to cover Kn,n − V (M) with
three vertex disjoint monochromatic connected matchings. �

After some intermediate steps, which involve similar arguments in a more
elaborate form, we get that there is a colour, red say, that has exactly three



non-trivial components. We then take a maximum red matching in Kn,n and
remove its vertices from the graph. The remaining graph is balanced and
coloured in blue and green. If we can cover it with two disjoint monochromatic
matchings, we are done. Therefore by Lemma 2.4 we can assume that its
colouring is split. This gives us information about the colours of the edges
inside the red components, which after some more analysis allows to conclude
that each colour has exactly three components. By continuing this type of
reasoning we can reduce the colouring to the form shown in Figure 1. It is then
only a matter of estimating the sizes of the individual parts and some more case
distinctions, to obtain that Kn,n can be covered by 5 disjoint monochromatic
connected matchings.
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[14] T. �Luczak, V. Rödl, and E. Szemerédi, Partitioning two-coloured complete
graphs into two monochromatic cycles, Combin. Probab. Comput. 7 (1998),
423–436.
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