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Abstract

We study the decomposition conjecture posed by Barát and Thomassen (2006),
which states that, for each tree T , there exists a natural number kT such that, if G
is a kT -edge-connected graph and |E(T )| divides |E(G)|, then G admits a partition
of its edge set into classes each of which induces a copy of T . In a series of papers,
starting in 2008, Thomassen has verified this conjecture for stars, some bistars,
paths of length 3, and paths whose length is a power of 2. In 2014, we verified this
conjecture for paths of length 5. In this paper we verify this conjecture for paths of
any given length.

Keywords: graphs, edge-decomposition, highly connected, path decomposition

� This research has been partially supported by Fapesp (Proc. 2013/03447-6), CNPq (Proc.
477203/2012-4 and 456792/2014-7), and MaCLinC Project of Numec/USP, Brazil. F. Botler
is supported by Fapesp (Proc. 2011/08033-0 and 2014/01460-8), G. O. Mota is supported
by Fapesp (Proc. 2013/11431-2 and 2013/20733-2), M. T. I. Oshiro is supported by Capes,
and Y. Wakabayashi is partially supported by CNPq Grant (Proc. 303987/2010-3).
Email:{fbotler|mota|oshiro|yw}@ime.usp.br

Available online at www.sciencedirect.com

www.elsevier.com/locate/endm

http://www.elsevier.com/locate/endm
http://www.sciencedirect.com


1 Introduction

A set D = {H1, . . . , Hk} of pairwise edge-disjoint subgraphs of a graph G is
called a decomposition of G if these subgraphs cover the edge set of G. If
Hi, for 1 ≤ i ≤ k, is isomorphic to a graph H, then we say that D is an
H-decomposition of G. When H is a path of length 2, it is easy to prove that
a connected graph G admits an H-decomposition if and only if G has an even
number of edges. On the other hand, Dor and Tarsi [6] proved that decid-
ing whether a graph admits an H-decomposition is an NP-complete problem
whenever H has a component with at least 3 edges. It is then natural to look
for sufficient conditions for a graph G to admit an H-decomposition. When
H is a tree, Barát and Thomassen [2] conjectured that high edge-connectivity
(together with the obvious necessary condition on the number of edges) may
suffice.

Conjecture 1.1 For any fixed tree T , there exists a natural number kT such
that, if G is a kT -edge-connected graph and |E(G)| is divisible by |E(T )|, then
G admits a T -decomposition.

Barát and Thomassen [2] proved that Conjecture 1.1 in the special case
T is the claw K1,3 is equivalent to a weakening of Tutte’s 3-flow conjecture,
posed by Jaeger [7]. Recently, Lovász, Thomassen, Wu, and Zhang [9] proved
that a (3k−3)-edge-connected graph G admits a K1,k-decomposition if |E(G)|
is divisible by k, showing that Conjecture 1.1 holds for stars, and, in particu-
lar, confirming Jaeger’s weak 3-flow conjecture. Thomassen [11,12,13,14] also
proved that Conjecture 1.1 holds for paths of length 3, paths of length 4, a
family of bistars, and more recently, for paths whose length is a power of 2.
The authors [4] and, independently, Merker [10] proved that Conjecture 1.1
holds for paths of length 5. In [10], Merker also verified the conjecture for
trees with diameter at most 4.

A recent result, obtained by Barát and Gerbner [1] and independently by
Thomassen [13], states that it is sufficient to prove Conjecture 1.1 for bipar-
tite graphs. We consider the following slightly different (but also equivalent)
version of Conjecture 1.1.

Conjecture 1.2 For any fixed tree T , there exists a natural number k′
T such

that, if G is a k′
T -edge-connected bipartite graph and |E(G)| is divisible by

2|E(T )|, then G admits a T -decomposition.

In this paper we verify Conjecture 1.2 for paths of any given length. Our
proof uses a generalization of the technique we presented in [4], which combines



a method introduced by Thomassen [11] and a technique used by Lovász [8]
for decomposition into cycles and paths.

In Section 2 we prove that a bipartite highly edge-connected graph admits
a factorization that has some important properties. In Section 3 we present
an important tool that allows us to switch edges among some trails of a fixed
length and obtain paths of the same length. In Section 4 we show how to
use these factorizations to obtain the desired decomposition. Owing to space
limitation, we present only sketches of the proofs.

The basic terminology and notation used in this paper are standard (see,
e.g. [5]). A path P in G is a sequence of distinct vertices P = v0v1 · · · vk such
that vivi+1 ∈ E(G), for i = 0, 1, . . . , k − 1. The length of P is the number of
its edges. A path of length k is denote by Pk. When convenient, we may refer
to a path P = v0v1 · · · vk as the subgraph of G induced by the edges vivi+1 for
i = 0, . . . , k − 1. A vanilla trail is a trail v0v1 · · · vk such that v1 · · · vk−1 is a
path. A vanilla k-trail is a vanilla trail of length k.

2 Fractional Factorizations and Bifactorizations

In this section we define the notions of factors and factorizations to deal with
the special bipartite graphs considered here.

Definition 2.1 Let G be a graph and consider X ⊆ V (G). Let a, k be
positive integers such that a ≤ k. We say that a subgraph F of G is an
(X, a, k)-factor of G if dF (v) = (a/k)dG(v) for every vertex v in X. We say
that a decomposition F of G is an (X, k)-fractional factorization if F contains
exactly two elements that are (X, 1, k)-factors of G, and k/2−1 elements that
are Eulerian (X, 2, k)-factors of G.

Note that a necessary condition for a graph G to contain an (X, 1, k)-factor
is that the degree in G of each vertex of X be divisible by k. Moreover, k
must be even for G to admit an (X, k)-fractional factorization.

In what follows, we show how to obtain such factorizations for bipartite
graphs in which for a given subset X of its vertices, each vertex in X has
degree divisible by a fixed positive integer. The next lemma, which can be
proved similarly to Proposition 2 in [13], shows how to obtain these graphs
from highly edge-connected bipartite graphs.

Lemma 2.2 Let k ≥ 2 and r be positive integers. If G = (A1, A2;E) is a
(6k − 6 + 4r)-edge-connected bipartite graph and |E| is divisible by k, then G
admits a decomposition into two spanning r-edge-connected graphs G1 and G2



such that, in each graph Gi the degree of every vertex of Ai is divisible by k.

The next lemma presents a sufficient condition in terms of edge-
connectivity for the graph Gi to admit an (Ai, k)-fractional factorization, for
i = 1, 2.

Lemma 2.3 Let k be an even positive integer and let r = 16max{8, k + 2}.
Let G = (A1, A2;E) be a bipartite graph such that the degree of each vertex
in A1 is divisible by k. If G is r-edge-connected, then G admits an (A1, k)-
fractional factorization.

The symmetric properties of G1 and G2 lead naturally to the concept of
bifactorization, that will be useful in this context.

Definition 2.4 Let k be an even positive integer and let G = (A1, A2;E) be
a bipartite graph. We say that a pair F = (F1,F2) of two sets of subgraphs
of G is a k-bifactorization of G if F1 ∪ F2 is a decomposition of G and, for
i ∈ {1, 2}, Fi is an (Ai, k)-fractional factorization of ∪F∈Fi

F .

Suppose G = (A1, A2;E) is a bipartite graph such that |E| is divisible
by k. A direct implication of Lemmas 2.2 and 2.3 is that if G is (6k− 6+4r)-
edge-connected for r ≥ 16max{8, k + 2}, then G admits a k-bifactorization.

3 The Disentangling Lemma

In this section we present an important tool for the proof of our main result.
For that, we introduce some new concepts and notation. Let D be a decom-
position of a graph G. Let v be a vertex of G and let vu ∈ E(G) and T ∈ D
be such that vu ∈ E(T ). If dT (u) = 1, we say that vu is a hanging edge of D
at v. We denote by Hang(v,D) the number of hanging edges of D at v. We
say that D is k-complete if Hang(v,D) > k for every v in V (G). We use the
next lemma to prove Lemma 3.2.

Lemma 3.1 Let G be a graph, and D a decomposition of G into trails of
length k. Let T be a trail in D, and v a vertex of T . If Hang(v,D) > k, then
there is a hanging edge vu of D at v such that u /∈ V (T ).

Let D be a decomposition of a graph G into trails. Given a vertex v of G,
we denote by D(v) the number of elements of D that have v as an end-vertex.
If an element T of D is such that v is the only end-vertex of T , we count T
twice (or with multiplicity 2) in D(v).

Now we are ready to state the Disentangling Lemma, and sketch a proof
for it.



Lemma 3.2 (Disentangling Lemma) Let G be a bipartite graph. If G ad-
mits a k-complete decomposition D into vanilla k-trails, then G admits a
k-complete decomposition D′ into paths of length k such that D′(v) = D(v)
for every v in V (G).

Sketch of the proof. For every vanilla trail T of G, let τ(T ) be the number of
end-vertices of T that have degree greater than 1 in T . Let D be a k-complete
decomposition into vanilla k-trails that minimizes

∑
T∈D τ(T ). Suppose that

there is a vanilla trail T0 in D that is not a path. Let x be an end-vertex of T0

of degree greater than 1 in T0, and let C be a cycle in T0 that contains x. Let
v be a neighbour of x in C. By Lemma 3.1, there is a hanging edge vu of D at
v such that u /∈ V (T0). Let T1 be the element of D that contains vu. Now, let
T ′
0 = T0−vx+vu, T ′

1 = T1−vu+vx, and D′ = D−T0−T1+T ′
0+T ′

1. Note that
D′(u) = D(u) for every u in V (G), and τ(T ′

0) = τ(T0) − 1. If τ(T ′
1) ≤ τ(T1),

then D′ is a k-complete decomposition of G into vanilla k-trails such that∑
T∈D′ τ(T ) <

∑
T∈D τ(T ). Otherwise, we have that τ(T ′

1) = τ(T1)+1 and T ′
1

contains a cycle C ′ that contains xv. Let v′ be a neighbour of x in C ′ such that
v′ �= v. Now, repeat the above operation, as long as necessary, considering T ′

1

and v′ instead of T0 and v. We can show that this procedure halts, and we
obtain the desired decomposition, concluding the proof.

4 Main result

In this section we show how to use bifactorizations of a graph to obtain
a k-complete decomposition into vanilla k-trails. Once we have this, we
may use Lemma 3.2 to obtain a Pk-decomposition. For that, we need one
more definition. Let F = (F1,F2) be a 2k-bifactorization of G, where
F1 = {M1, N1, F1, . . . Fk−1} and F2 = {M2, N2, H1, . . . Hk−1}. Let Gi =
∪F∈Fi

F , for i = 1, 2. We say that D is F-balanced if D(v) = dG1(v)/k +
dM2(v) + dN2(v) for every v in A1, and D(v) = dG2(v)/k+ dM1(v) + dN1(v) for
every v in A2.

Proposition 4.1 If G = (A1, A2;E) is a bipartite graph that admits a
4-bifactorization F = (F1,F2), then G admits an F-balanced decomposition
D into paths of length 2. Moreover, if the degree of every vertex in Ai is at
least 8 in Gi = ∪F∈Fi

F , for i = 1, 2, then D is 3-complete.

Proof Let F1 = {M1, N1, F1} and F2 = {M2, N2, F2}. Since dM1(v) = dN1(v)
for every vertex of A1, we can decompose M1 ∪N1 into paths of length 2 with
end-vertices in A2. Since F1 is Eulerian, we can decompose F1 into paths of
length 2 with end-vertices in A1. We can find an analogous decomposition for



M2 ∪N2 and F2. If dGi
(v) ≥ 8, then dMi∪Ni

(v) ≥ 4 and Hang(v,D) ≥ 4. This
concludes the proof. �

Proposition 4.2 If G = (A1, A2;E) is a bipartite graph that admits a
6-bifactorization F = (F1,F2), then G admits an F-balanced decomposition
D into paths of length 3. Moreover, if the degree of every vertex in Ai is at
least 12 in Gi = ∪F∈Fi

F , for i = 1, 2, then D is 3-complete.

Proof Let F1 = {M1, N1, F1, H1} and F2 = {M2, N2, F2, H2}. Choose an
Eulerian orientation for F1 and let DF1 be a decomposition of F1 into directed
paths of length 2 with both end-vertices in A1. Analogously, we obtain DH1

from H1. Since dM1(v) = dN1(v) = d+F1
(v) = d+H1

(v) for every vertex of A1, we
can extend each path of DF1 with an edge of M1, and each path of DH1 with
an edge of N1. Let D1 be the decomposition of G1 obtained above. Note that
the first and the last edge of every path of D1 is an edge of M1 ∪ N1 and an
edge of F1 ∪H1 that is oriented from A2 to A1, respectively. We can find an
analogous decomposition D2 of G2, and obtain the decomposition D = D1∪D2

of G, as desired. If dGi
(v) ≥ 12, then dMi∪Ni

(v) ≥ 4 and Hang(v,D) ≥ 4. This
concludes the proof. �

Theorem 4.3 Let k be a positive integer. Suppose G = (A1, A2;E) is a
bipartite graph that admits a 2k-bifactorization F = (F1,F2). If the degree of
every vertex in Ai is at least k(2k − 1) in Gi = ∪F∈Fi

F , for i = 1, 2, then G
admits an F-balanced k-complete Pk-decomposition.

Sketch of the proof. Suppose the statement is not true and let k be the smallest
positive integer for which the statement is false. Suppose that a graph G
admits a 4-bifactorization F such that in Gi the vertices of Ai have minimum
degree 6. Since every vertex of Ai must have degree multiple of 4 in Gi, we
have that dGi

(v) ≥ 8 for every vertex v ∈ Ai. Thus, by Propositions 4.1, we
have that k > 2. By Proposition 4.2, we conclude that k > 3. Let G be a
bipartite graph and let F = (F1,F2), where F1 = {M1, N1, F1, . . . Fk−1} and
F2 = {M2, N2, H1, . . . Hk−1}. For j = 1, 2, choose an Eulerian orientation of
Fk−j, let F+

k−j be the edges of Fk−j oriented from A2 to A1, and let F−
k−j =

Fk−j − F+
k−j. Let F ′

1 = {F+
k−2, F

+
k−1, F1, . . . , F(k−2)−1} and G′

1 = ∪F ′∈F ′
1
F ′.

Analogously, from F2 we can find F ′
2 and G′

2; then, we have that F
′ = (F ′

1,F ′
2)

is a 2(k− 2)-bifactorization of G′ = G′
1 ∪G′

2. Note that dG′
i
(v) = k−2

k
dGi

(v) ≥
(k − 2)(2k − 1) > (k − 2)(2k − 5). By the minimallity of k, we have that
G′ admits an F

′-balanced (k − 2)-complete decomposition D′ into paths of
length k − 2. Since D′ is F

′-balanced, we have that D′(v) = dG′
1
/(k − 2) +

dH+
k−2

(v)+dH+
k−1

(v), for each vertex v of A1. Since dG′
1
(v)/(k−2) = dG1(v)/k =



dM1(v)+dN1(v) and dH+
k−j

(v) = dH−
k−j

(v) for j = 1, 2, we have D′(v) = dM1(v)+

dN1(v)+ dH−
k−2

(v)+ dH−
k−1

(v), for every v in Ai. Analogously, we have D′(v) =
dM2(v) + dN2(v) + dF−

k−2
(v) + dF−

k−1
(v) for every vertex v in A2. Thus, using

the edges in M1 ∪ N1 ∪ H−
k−2 ∪ H−

k−1 and M2 ∪ N2 ∪ F−
k−2 ∪ F−

k−1 we can
extend each path of D′ with an edge at each of its end-vertices, obtaining a
decomposition D∗ into vanilla k-trails. Since each path of D′ receive an edge
of M1 ∪ N1 ∪ H−

k−2 ∪ H−
k−1 or M2 ∪ N2 ∪ F−

k−2 ∪ F−
k−1, we have that D∗ is

F-balanced. Choose D∗ that maximizes
∑

v∈V (G) Hang(v,D∗). Since D′(v) ≥
dGi

(v)/k ≥ 2k − 1, one can prove that Hang(v,D∗) > k for every vertex v in
V (G). Thus D∗ is k-complete. By Lemma 3.2, there is a decomposition D of
G into paths of length k such that D(v) = D∗(v) for every vertex v in V (G).
This concludes the proof.

The next corollary, which is the main result of this paper, combines Lem-
mas 2.2 and 2.3, and Theorem 4.3.

Corollary 4.4 Let k ≥ 2 and r = max{128, 32k + 32, k(2k − 1)}. Let G =
(A1, A2;E) be a bipartite graph such that |E| is divisible by 2k. If G is (12k−
6+ 4r)-edge-connected, then G admits a decomposition into paths of length k.

Proof By Lemma 2.2, G can be decomposed into two r-edge-connected
graphs G1 and G2, such that dGi

(v) is divisible by 2k, for every vertex v
in Ai. Since r ≥ 16max{8, 2k + 2}, by Lemma 2.3, Gi admits an (Ai, 2k)-
fractional factorization Fi. Thus, F = (F1,F2) is a 2k-bifactorization for G.
Since Gi is r-edge-connected, we have dGi

(v) ≥ k(2k− 1) for every vertex v in
Ai. By Theorem 4.3, G admits an F-balanced k-complete decomposition into
paths of length k. �

5 Concluding remarks

The Disentangling Lemma (Lemma 2.3) can be used to obtain other decompo-
sition results. In fact, in a forthcoming paper [3], we use a version of the Dis-
entangling Lemma to prove results on path decompositions of regular graphs
with prescribed girth. It would be very interesting to obtain a generalization
of the Disentangling Lemma that deals with trees with maximum degree at
most 3. Another interesting approach would be to obtain an extension of the
results presented in Section 4 in order to obtain a decomposition of a highly
edge-connected graph into graphs that can be obtained from a fixed tree by
the identification of some of its vertices.
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