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Abstract

A Hamilton cycle in a digraph is a cycle passing through all the vertices, where
all the arcs are oriented in the same direction. The problem of finding Hamilton
cycles in directed graphs is well studied and is known to be hard. One of the
main reasons for this, is that there is no general tool for finding Hamilton cycles
in directed graphs comparable to the so called Posá ‘rotation-extension’ technique
for the undirected analogue. Here, we present a general and a very simple method,
using known results, to attack problems of packing, counting and covering Hamilton
cycles in random directed graphs, for every edge-probability p > logC(n)/n. Our
results are asymptotically optimal with respect to all parameters and apply equally
well to the undirected case.
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1 Introduction

A Hamilton cycle in a graph is a cycle passing through every vertex of the
graph exactly once, and a graph is Hamiltonian if it contains a Hamilton
cycle. Once Hamiltonicity is established, there are many natural question to
strengthen it. For example, one can ask the following questions:

• How many distinct Hamilton cycles does a given graph have? (This problem
is referred to as the counting problem.)

• Let G be a graph with minimum degree δ(G). Is it possible to find roughly
δ(G)/2 edge-disjoint Hamilton cycles? (This problem is referred to as the
packing problem.)

• Let ∆(G) denote the maximum degree of G. Is it possible to find roughly
∆(G)/2 Hamilton cycles for which every edge e ∈ E(G) appears in at least
one of these cycle? (This problem is referred to as the covering problem.)

All the above mentioned questions have a long history and many results
are known.

Let us define G(n, p) to be the probability space of graphs on a vertex
set [n] := {1, . . . , n}, such that each possible (unordered) pair xy of elements
of [n] is appears as an edge independently with probability p. We say that
a graph G ∼ G(n, p) satisfies a property P of graphs with high probability
(w.h.p.) if the probability that G satisfies P tends to 1 as n tends to infinity.

The question of packing in the probabilistic setting was firstly discussed

by Bollobás and Frieze in the 80’s [3]. They showed that if {Gi}
(n
2
)

i=0 is a
random graph process on [n], where G0 is the empty graph and Gi is obtained
from Gi−1 by adjoining a non-edge of Gi−1 uniformly at random, w.h.p. as
soon as Gi has minimum degree k (where k is a fixed integer), it has ⌊k/2⌋
edge-disjoint Hamilton cycles plus a disjoint perfect matching if k is odd.
Their result generalizes an earlier result of Bollobás [2] who proved (among

other things) that for p = lnn+ln lnn+ω(1)
n

, a typical graph G ∼ G(n, p) is
Hamiltonian. Note that this value of p is optimal in the sense that for p =
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lnn+ln lnn−ω(1)
n

, it is known that w.h.p. a graph G ∼ G(n, p) satisfies δ(G) ≤ 1,
and therefore is not Hamiltonian. As the culmination of a long line of research
Knox, Kühn and Osthus [15], Krivelevich and Samotij [17] and Kühn and
Osthus [19] completely solved the packing problem for the entire range of p.

Regarding the question of counting, we mention the result of Cuckler and
Kahn [5] who strengthened the classical theorem of Dirac from the 50’s [6]
and proved that every graph G on n vertices with minimum degree δ(G) ≥

n/2 contains at least
(

δ(G)
e

)n

(1 − o(1))n distinct Hamilton cycles. A typical

random graph G ∼ G(n, p) with p > 1/2 shows that this estimate is sharp (up
to the (1 − o(1))n factor). Indeed, in this case with high probability δ(G) =
pn+o(n) and the expected number of Hamilton cycles is pn(n−1)! < (pn/e)n.

These results are only few examples of a long line of research related to the
Hamiltonicity property of random and pseudo-random graphs (see, e.g. [1],
[9], [23], [16], [11], [12], [13]).

While in (general/random/pseudorandom) graphs there are many known
results, much less is known about the problems of counting, packing and cov-
ering in the directed setting. The main difficulty here is that in this set-
ting, the so called Posá rotation-extension technique (see, e.g. [22]) does
not work in its simplest form. In the paper we present a simple method
to attack (and to approximately solve) all the above mentioned problems in
random/pseudorandom directed graphs, with an optimal (up to a polylog(n)
factor) density. Our method is also applicable in the undirected setting, and
therefore reproves many of the known results in a simpler way.

A directed graph (or digraph) is a pair D = (V,E) with a set of vertices
V and a set of arcs E, where each arc is an ordered pair of elements of V . A
Hamilton cycle in a digraph is a cycle going through all the vertices exactly
once, where all the arcs are oriented in the same direction in a cyclic order. A
directed graph is called oriented, if for every pair of vertices u, v ∈ V , at most
one of the directed edges (u, v) or (v, u) appears in the graph.

Now, let us define D(n, p) to be the probability space consisting of all
directed graphs on vertex set [n] for which each possible arc is added with
probability p independently at random.

The problem of packing Hamilton cycles in digraphs goes back to the 70’s.
Tilson showed that every complete digraph has a Hamilton decomposition. We
also mention a remarkable result of Kühn and Osthus (see [18]) which proved



that for any regular orientation of a sufficiently dense graph one can find a
Hamilton decomposition. For many other results related to Hamiltonicity in
digraphs see [21], [2], [10], [14], [7], [24], [25], [8], [4]. Our first result proves
the existence of (1− o(1))np edge-disjoint Hamilton cycles in D(n, p).

Theorem 1.1 For p = ω
(

log4 n
n

)
, w.h.p. the digraph D ∼ D(n, p) has (1 −

o(1))np edge-disjoint Hamilton cycles.

Note that this result is approximately tight (up to a polylogn factor). At
a cost of some polylogn factor in the density, we obtain an analog for pseudo-
random digraphs.

Theorem 1.2 Let D be a (n, λ, p) pseudo-random digraph where p = ω
(

log14 n
n

)
.

Then D contains (1−oλ(1))np edge-disjoint Hamilton cycles where oλ(1) → 0
as λ → 0.

We also show that in random directed graphs one can cover all the edges
by not too many cycles.

Theorem 1.3 Let p = ω
(

log4 n
n

)
. Then, a digraph D ∼ D(n, p) w.h.p. can be

covered with (1 + o(1))np directed Hamilton cycles.

In the next theorem we show that the number of directed Hamilton cy-
cles in such graphs (pseudorandom/random) is concentrated (up to a sub-
exponential factor) around its mean.

Theorem 1.4 Let p = ω
(

log2 n
n

)
. Then, a digraph D ∼ D(n, p) w.h.p. con-

tains (1± o(1))nn!pn directed Hamilton cycles.

We note that the method we used in Theorem 1.2 in order to extend the
random result from Theorem 1.1 to the pseudo-random case can be also used
in Theorem 1.3 and in Theorem 1.4 to get the pseudo-random versions of these
theorems.

The proofs of the four theorems in the paper are based on very similar
ideas and they all using the same method. Therefore, we will give here only
one of the proof sketches. In the next section one can find a proof highlights
for packing Hamilton cycles in D(n, p).



2 Proof sketch - Packing Hamilton cycles in D(n, p)

Proof. [Proof of Theorem 1.1.] Let α = α(n) be some function tending
arbitrarily slowly to infinity with n. Let n = mℓ + s where ℓ = α log n,
t = α3 log3 n and let p = α4 log4 n/n. Let V(1), . . . ,V(t) be a collection of
partitions of X = [n], chosen uniformly and independently at random, where

V(i) = S(i) ∪ V
(i)
1 ∪ · · · ∪ V

(i)
ℓ , |S(i)| = s = n/α log n and |V

(i)
j | = m. To

begin, whenever we expose the edges of a directed graph D ∼ D(n, p), we
will assign the edges of D among t edge disjoint subdigraphs D(1), . . . ,D(t).
The digraphs D(i) are constructed in a way that every directed edge between
V

(i)
j and V

(i)
j+1 in D(i) appears with probability (1 − o(1))pℓ/t := pin and all

the directed edges −→uv (u ∈ V
(i)
ℓ and v ∈ V

(i)
1 ∪ S(i) or u ∈ S(i) and v ∈ V

(i)
1 )

appears independently with probability (1− o(1))pn2/αts2 (and we delete all
other edges). We will prove that with probability 1 − o(1/t), D(i) contains
(1− o(1))np/t edge-disjoint Hamilton cycles.

Since every directed edge between V
(i)
j and V

(i)
j+1 appears with probability

(1− o(1))pℓ/t, using the Gale-Ryser theorem on r-factors in bipartite graphs
(see, e.g. [20]), we show that with probability 1 − o(1/t) there exists L :=

(1 − o(1))mpin edge-disjoint perfect matchings {M
(i)
j,k}

L
k=1. Taking the union

of the edges in the matchings
⋃ℓ−1

j=1M
(i)
j,k gives m directed paths, each directed

from V
(i)
1 to V

(i)
ℓ and covering

⋃ℓ

j=1 V
(i)
j . Let Pk,1, . . . , Pk,m denote these paths

and Pk = {Pk,1, . . . , Pk,m}.

Now, for each i ∈ [t] we look at the auxiliary digraph D̃(i), obtained from
D(i) by shrinking every path Pk,j into a single vertex and keeping only out-
neighbours of the last and in-neighbours of the first from each path. Note
that D̃(i) ∼ (s + m, (1 − o(1))pn2/αts2) and thus contains L edge-disjoint
Hamilton cycles with probability 1 − o(1/t). Now, every Hamilton cycle in

D̃(i) corresponds to a Hamilton cycle in D and by the construction they are
all edge-disjoint. All in all, w.h.p. we have Lt = (1 − o(1))np edge-disjoint
Hamilton cycles, as desired. ✷

General outline of the other proofs. In the proof of Theorems 1.2, 1.4
and 1.3 we use similar methods as in the proof above. Here we give the general
outline. Suppose that we have a digraph G and that we wish to find many
Hamilton cycles (possibly edge disjoint, or covering,...). We will first break
the vertex set of our digraph into a number of pieces V0, V1, . . . , Vℓ. For each
i ∈ [ℓ − 1] between Vi and Vi+1 consider the bipartite digraph Gi consisting
of edges of G from Vi to Vi+1. We will apply matching results to all of these



digraphs to get many perfect matchings directed from Vi to Vi+1. Taking one
matching from each Gi, we obtain a collection P of directed paths from V1 to
Vℓ, which cover all of

⋃ℓ

i=1 Vi. The aim is now to use edges incident to V0 to
complete each P into a Hamilton cycle.

In order to do this, for each collection of paths P which we wish to complete
to a Hamilton cycle, we will assign it an individual sparse random subdigraph
of G consisting of edges incident to V0 ∪ V1 ∪ Vℓ. Provided that G had certain
expansion properties, this random subdigraph will also share these properties.
Using these sparse random subdigraphs we will then construct auxiliary sub-
digraphs for each such P in which a directed Hamilton cycle corresponds to a
directed Hamilton cycle in G containing the paths P. Lastly, using the expan-
sion properties of these auxiliary digraphs we will then guarantee Hamilton
cycles, as required.
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